Abstract. Nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used for numerous applications including text mining, computer vision, pattern discovery, and bioinformatics. A mathematical formulation for NMF appears as a non-convex optimization problem, and various types of algorithms have been devised to solve the problem. The alternating nonnegative least squares (ANLS) framework is a block coordinate descent approach for solving NMF, which was recently shown to be theoretically sound and empirically efficient. In this paper, we present a novel algorithm for NMF based on the ANLS framework. Our new algorithm builds upon the block principal pivoting method for the nonnegativity-constrained least squares problem that overcomes a limitation of the active set method. We introduce ideas that efficiently extend the block principal pivoting method within the context of NMF computation. Our algorithm inherits the convergence property of the ANLS framework and can easily be extended to other constrained NMF formulations. Extensive computational comparisons using data sets that are from real life applications as well as those artificially generated show that the proposed algorithm provides state-of-the-art performance in terms of computational speed.
We review algorithms developed for nonnegative matrix factorization (NMF) and nonnegative tensor factorization (NTF) from a unified view based on the block coordinate descent (BCD) framework. NMF and NTF are low-rank approximation methods for matrices and tensors in which the low-rank factors are constrained to have only nonnegative elements. The nonnegativity constraints have been shown to enable natural interpretations and allow better solutions in numerous applications including text analysis, computer vision, and bioinformatics. However, the computation of NMF and NTF remains challenging and expensive due the constraints. Numerous algorithmic approaches have been proposed to efficiently compute NMF and NTF. The BCD framework in constrained non-linear optimization readily explains the theoretical convergence properties of several efficient NMF and NTF algorithms, which are consistent with experimental observations reported in literature. In addition, we discuss algorithms that do not fit in the BCD framework contrasting them from those based on the BCD framework. With insights acquired from the unified perspective, we also propose efficient algorithms for updating NMF when there is a small change in the reduced dimension or in the data. The effectiveness of the proposed updating algorithms are validated experimentally with synthetic and real-world data sets.
Nonnegative Matrix Factorization (NMF) is a dimension reduction method that has been widely used for various tasks including text mining, pattern analysis, clustering, and cancer class discovery. The mathematical formulation for NMF appears as a non-convex optimization problem, and various types of algorithms have been devised to solve the problem. The alternating nonnegative least squares (ANLS) framework is a block coordinate descent approach for solving NMF, which was recently shown to be theoretically sound and empirically efficient. In this paper, we present a novel algorithm for NMF based on the ANLS framework. Our new algorithm builds upon the block principal pivoting method for the nonnegativity constrained least squares problem that overcomes some limitations of active set methods. We introduce ideas to efficiently extend the block principal pivoting method within the context of NMF computation. Our algorithm inherits the convergence theory of the ANLS framework and can easily be extended to other constrained NMF formulations. Comparisons of algorithms using datasets that are from real life applications as well as those artificially generated show that the proposed new algorithm outperforms existing ones in computational speed.
Research on knowledge of results and knowledge of performance has been directed toward identification of the optimal schedule for administering feedback. The purpose of this investigation was to assess whether a schedule based on performance feedback controlled by the learner would be a more effective means of delivering feedback than any predetermined or random schedule. Participants were randomly assigned to one of five conditions: (a) control group receiving no performance feedback, (b) 50% relative performance feedback, (c) summary performance feedback, (d) subject-controlled performance feedback, and (e) yoked control group. Data were collected during an acquisition phase (four blocks of 10 trials) and a retention phase (two block of 10 trials) in which subjects performed an underhand ball toss. Repeated-measures analyses indicated significant main effects for the absolute error (AE). Participants in the subject-controlled performance feedback condition performed significantly better on both retention trials than the other groups. Analysis suggests that a feedback schedule which is controlled by the learner may be a more effective means of delivering augmented feedback than other schedules which have been examined.
We introduce an efficient algorithm for computing a low-rank nonnegative CANDECOMP/PARAFAC (NNCP) decomposition. In text mining, signal processing, and computer vision among other areas, imposing nonnegativity constraints to the low-rank factors of matrices and tensors has been shown an effective technique providing physically meaningful interpretation. A principled methodology for computing NNCP is alternating nonnegative least squares, in which the nonnegativity-constrained least squares (NNLS) problems are solved in each iteration. In this chapter, we propose to solve the NNLS problems using the block principal pivoting method. The block principal pivoting method overcomes some difficulties of the classical active method for the NNLS problems with a large number of variables. We introduce techniques to accelerate the block principal pivoting method for multiple right-hand sides, which is typical in NNCP computation. Computational experiments show the state-of-the-art performance of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.