The mammalian intestine is the largest immune organ that contains the intestinal stem cells (ISC), differentiated epithelial cells (enterocytes, Paneth cells, goblet cells, tuft cells, etc.), and gut resident-immune cells (T cells, B cells, dendritic cells, innate lymphoid cell, etc.). Inflammatory bowel disease (IBD), a chronic inflammatory disease characterized by mucosa damage and inflammation, threatens the integrity of the intestine. The continuous renewal and repair of intestinal mucosal epithelium after injury depend on ISCs. Inflamed mucosa healing could be a new target for the improvement of clinical symptoms, disease recurrence, and resection-free survival in IBD treated patients. The knowledge about the connections between ISC and immune cells is expanding with the development of in vitro intestinal organoid culture and single-cell RNA sequencing technology. Recent findings implicate that immune cells such as T cells, ILCs, dendritic cells, and macrophages and cytokines secreted by these cells are critical in the regeneration of ISCs and intestinal epithelium. Transplantation of ISC to the inflamed mucosa may be a new therapeutic approach to reconstruct the epithelial barrier in IBD. Considering the links between ISC and immune cells, we predict that the integration of biological agents and ISC transplantation will revolutionize the future therapy of IBD patients.
The well studied general transcription cofactor Sub1/PC4 has multiple functions in transcription. It plays both a negative and a positive role in transcription initiation and is involved in elongation and downstream transcription processes and as a transcription reinitiation factor. MoSub1, a Sub1/PC4 orthologue from rice blast fungus, binds the single-stranded DNA dT(12) tightly with an affinity of 186 nM. The crystal structure of MoSub1 has been solved to 1.79 Å resolution. The structure of the protein shows high similiarity to the structure of PC4 and it has a similar dimer interface and DNA-binding region to PC4, indicating that MoSub1 could bind DNA using the same motif as other proteins of the Sub1/PC4 family. There are two novel features in the MoSub1 structure: a region N-terminal to the DNA-binding domain and a C-terminal extension. The region N-terminal to the DNA-binding domain of MoSub1 turns back towards the DNA-binding site and may interact directly with DNA or the DNA-binding site. The C-terminal extension region, which is absent in PC4, may not be capable of interacting with DNA and is one possible reason for the differences between Sub1 and PC4.
The MBP1 family proteins are the DNA binding subunits of MBF cell-cycle transcription factor complexes and contain an N terminal winged helix-turn-helix (wHTH) DNA binding domain (DBD). Although the DNA binding mechanism of MBP1 from Saccharomyces cerevisiae has been extensively studied, the structural framework and the DNA binding mode of other MBP1 family proteins remains to be disclosed. Here, we determined the crystal structure of the DBD of PCG2, the Magnaporthe oryzae orthologue of MBP1, bound to MCB–DNA. The structure revealed that the wing, the 20-loop, helix A and helix B in PCG2–DBD are important elements for DNA binding. Unlike previously characterized wHTH proteins, PCG2–DBD utilizes the wing and helix-B to bind the minor groove and the major groove of the MCB–DNA whilst the 20-loop and helix A interact non-specifically with DNA. Notably, two glutamines Q89 and Q82 within the wing were found to recognize the MCB core CGCG sequence through making hydrogen bond interactions. Further in vitro assays confirmed essential roles of Q89 and Q82 in the DNA binding. These data together indicate that the MBP1 homologue PCG2 employs an unusual mode of binding to target DNA and demonstrate the versatility of wHTH domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.