α-MnO is a promising material for ozone catalytic decomposition and the oxygen vacancy is often regarded as the active site for ozone adsorption and decomposition. Here, α-MnO nanowire with tunable K concentration was prepared through a hydrothermal process in KOH solution. High concentration K in the tunnel can expand crystal cell and break the charge balance, leading to a lower average oxidation state (AOS) of Mn, which means abundant oxygen vacancy. DFT calculation has also proven that the samples with higher K concentration exhibit lower formation energy for oxygen vacancy. Due to the enormous active oxygen vacancies existing in the α-MnO nanowire, the lifetime of the catalyst (corresponding to 100% ozone removal rate, 25 °C) is increased from 3 to 15 h. The FT-IR results confirmed that the accumulation of intermediate oxygen species on the catalyst surface is the main reason why it is deactivated after long time reaction. In this work, the performance of the catalyst has been improved because the abundant active oxygen vacancies are fabricated by the electrostatic interaction between oxygen atoms inside the tunnels and the introduced K, which offers us a new perspective to design a high efficiency catalyst and may promote manganese oxide for practical ozone elimination.
Metal fiber porous materials with intrinsic properties of metal and functional properties of porous materials have received a great deal of attention in the fundamental research and industry applications. With developments of the preparation technologies and industrial requirements, porous fiber metals with excellent properties are developed and applied in many industry areas, e.g., sound absorption, heat transfer, energy absorption and lightweight structures. The applied research progress of the metal fiber porous materials in such application areas based on the recent work in our group was reviewed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.