The tempered evolution equation describes the trapped dynamics, widely appearing in nature, e.g., the motion of living particles in viscous liquid. This paper proposes the fast predictor-corrector approach for the tempered fractional ordinary differential equations by digging out the potential 'very' short memory principle. The algorithms basing on the idea of equidistributing are detailedly described; their effectiveness and low computation cost, being linearly increasing with time t, are numerically demonstrated.
Due to finite lifespan of the particles or boundedness of the physical space, tempered fractional calculus seems to be a more reasonable physical choice. Stability is a central issue for the tempered fractional system. This paper focuses on the tempered Mittag–Leffler stability for tempered fractional systems, being much different from the ones for pure fractional case. Some new lemmas for tempered fractional Caputo or Riemann–Liouville derivatives are established. Besides, tempered fractional comparison principle and extended Lyapunov direct method are used to construct stability for tempered fractional system. Finally, two examples are presented to illustrate the effectiveness of theoretical results.
In the famous continuous time random walk (CTRW) model, because of the finite lifetime of biological particles, it is sometimes necessary to temper the power law measure such that the waiting time measure has a convergent first moment. The CTRW model with tempered waiting time measure is the so-called tempered fractional derivative. In this article, we introduce the tempered fractional derivative into complex networks to describe the finite life span or bounded physical space of nodes. Some properties of the tempered fractional derivative and tempered fractional systems are discussed. Generalized synchronization in two-layer tempered fractional complex networks via pinning control is addressed based on the auxiliary system approach. The results of the proposed theory are used to derive a sufficient condition for achieving generalized synchronization of tempered fractional networks. Numerical simulations are presented to illustrate the effectiveness of the methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.