In the ischemic brain, reperfusion with tissue plasminogen activator (tPA) sometimes causes catastrophic hemorrhagic transformation (HT); however, the mechanism remains elusive. Here, we show that the basement membrane, and not the endothelial cells, is vulnerable to ischemic/reperfusion injury with tPA treatment. We treated a spontaneously hypertensive rat model of middle cerebral artery occlusion (MCAO) with vehicle alone, tPA alone, or a free radical scavenger, edaravone, plus tPA. Light and electron microscopic analyses of each microvascular component revealed that the basement membrane disintegrated and became detached from the astrocyte endfeet in tPA-treated animals that showed HT. On the other hand, edaravone prevented the dissociation of the neurovascular unit, dramatically decreased the HT, and improved the neurologic score and survival rate of the tPA-treated rats. These results suggest that the basement membrane that underlies the endothelial cells is a key structure for maintaining the integrity of the neurovascular unit, and a free-radical scavenger can be a viable agent for inhibiting tPA-induced HT.
Hepatocyte growth factor (HGF) and glial cell line-derived neurotrophic factor (GDNF) are strong neurotrophic factors. However, their potentials in neurogenesis, angiogenesis, synaptogenesis, and antifibrosis have not been compared. Therefore, we investigated these effects of HGF and GDNF in cerebral ischemia in the rat. Wistar rats were subjected to 90 min of transient middle cerebral artery occlusion (tMCAO). Immediately after reperfusion, HGF or GDNF was given by topical application. BrdU was injected intraperitoneally twice daily 1, 2, and 3 days after tMCAO. On 14 day, we histologically evaluated infarct volume, antiapoptotic effect, neurogenesis, angiogenesis, synaptogenesis, and antifibrosis. Both HGF and GDNF significantly reduced infarct size and the number of TUNEL-positive cells, but only HGF significantly increased the number of BrdU-positive cells in the subventricular zone, and 5'-bromo-2'-deoxyuridine -positive cells differentiated into mature neurons on the ischemic side. Enhancement of angiogenesis and synaptogenesis at the ischemic boundary zone was also observed only in HGF-treated rats. HGF significantly decreased the glial scar formation and scar thickness of the brain pia mater after tMCAO, but GDNF did not. Our study shows that both HGF and GDNF had significant neurotrophic effects, but only HGF can promote the neurogenesis, angiogenesis, and synaptogenesis and inhibit fibrotic change in brains after tMCAO.
One of the therapeutics for acute cerebral ischemia is tissue plasminogen activator (t-PA). Using t-PA after 3 hour time window increases the chances of hemorrhage, involving multiple mechanisms. In order to show possible mechanisms of t-PA toxicity and the effect of the free radical scavenger edaravone, we administered vehicle, plasmin, and t-PA into intact rat cortex, and edaravone intravenously. Plasmin and t-PA damaged rat brain with the most prominent injury in t-PA group on 4-HNE, HEL, and 8-OHdG immunostainings. Such brain damage was strongly decreased in t-PA plus edaravone group. For the neurovascular unit immunostainings, occludin and collagen IV expression was decreased in single plasmin or t-PA group, which was recovered in t-PA plus edaravone group. In contrast, matrix metalloproteinase-9 intensity was the strongest in t-PA group, less in plasmin, and was the least prominent in t-PA plus edaravone group. In vitro data showed a strong damage to tight junctions for occludin and claudin 5 in both administration groups, while there were no changes for endothelial (NAGO) and perivascular (GFAP) stainings. Such damage to tight junctions was recovered in t-PA plus edaravone group with similar recovery in Sodium-Fluorescein permeability assay. Administration of t-PA caused oxidative stress damage to lipids, proteins and DNA, and led to disruption of outer parts of neurovascular unit, greater than the effect in plasmin administration. Additive edaravone ameliorated such an oxidative damage by t-PA with protecting outer layers of blood-brain barrier (in vivo) and tight junctions (in vitro).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.