The vegetation landscape in urban green space has been shown to provide great psychological benefits to people. Flower border is a well-designed small-scale vegetation landscape with the advantages of color and vegetation richness. This study focused on the effects of the visual attributes of flower borders on the aesthetic preference and emotional perception. The face recognition measurement method was used to obtain the emotional perception and the questionnaire survey method was used to measure the aesthetic preference. The results indicated the following: (1) regarding the ‘color features’ factor, high proportions of cool color and green vegetation significantly increased aesthetic preference and emotional valence, while the proportion of warm color had a negative effect on valence; (2) the ‘visual attractiveness’ (color brightness, and visual richness) and ‘color configuration’ (number of plant patches and number of color hues) factor was positively associated with aesthetic preference and emotional valence; (3) aesthetic preference was significantly related to emotional valence; (4) males expressed higher aesthetic preference and valence for flower border images than females. The results are expected to improve the aesthetic quality of flower borders and to promote public emotional health through the effective design of urban vegetation landscapes.
Emotional responses are significant for understanding public perceptions of urban green space (UGS) and can be used to inform proposals for optimal urban design strategies to enhance public emotional health in the times of COVID-19. However, most empirical studies fail to consider emotion-oriented landscape assessments under dynamic perspectives despite the fact that individually observed sceneries alter with angle. To close this gap, a real-time sentimental-based landscape assessment framework is developed, integrating facial expression recognition with semantic segmentation of changing landscapes. Furthermore, a case study using panoramic videos converted from Google Street View images to simulate changing scenes was used to test the viability of this framework, resulting in five million big data points. The result of this study shows that through the collaboration of deep learning algorithms, finer visual variables were classified, subtle emotional responses were tracked, and better regression results for valence and arousal were obtained. Among all the predictors, the proportion of grass was the most significant predictor for emotional perception. The proposed framework is adaptable and human-centric, and it enables the instantaneous emotional perception of the built environment by the general public as a feedback survey tool to aid urban planners in creating UGS that promote emotional well-being.
Although creating a high-quality urban green space (UGS) is of considerable importance in public health, few studies have used individuals’ emotions to evaluate the UGS quality. This study aims to conduct a multidimensional emotional assessment method of UGS from the perspective of spatial quality. Panoramic videos of 15 scenes in the West Lake Scenic Area were displayed to 34 participants. For each scene, 12 attributes regarding spatial quality were quantified, including perceived plant attributes, spatial structure attributes, and experiences of UGS. Then, the Self-Assessment-Manikin (SAM) scale and face recognition model were used to measure people’s valence-arousal emotion values. Among all the predictors, the percentages of water and plants were the most predictive indicators of emotional responses measured by SAM scale, while the interpretation rate of the model measured by face recognition was insufficiently high. Concerning gender differences, women experienced a significantly higher valence than men. Higher percentages of water and plants, larger sizes, approximate shape index, and lower canopy densities were often related to positive emotions. Hence, designers must consider all structural attributes of green spaces, as well as enrich visual perception and provide various activities while creating a UGS. In addition, we suggest combining both physiological and psychological methods to assess emotional responses in future studies. Because the face recognition model can provide objective measurement of emotional responses, and the self-report questionnaire is much easier to administer and can be used as a supplement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.