Over past years, various attempts have been made at analysing Time Series (TS) which has been raising great interest of Data Mining community due to its special data format and broad application scenarios. An important aspect in TS analysis is Time Series Classification (TSC), which has been applied in medical diagnosis, human activity recognition, industrial troubleshooting, etc. Typically, all TSC work trains a stable model from an off-line TS dataset, without considering potential Concept Drift in streaming context. Domains like healthcare look to enrich the database gradually with more medical cases, or in astronomy, with human's growing knowledge about the universe, the theoretical basis for labelling data will change. The techniques applied in a stable TS dataset are then not adaptable in such dynamic scenarios (i.e. streaming context). Classical data stream analysis are biased towards vector or row data, where each attribute is independent to train an adaptive learning model, but rarely considers Time Series as a stream instance. Processing such type of data requires combining techniques in both communities of Time Series (TS) and Data Streams. To this end, by adopting the concepts of Shapelet and Matrix Profile, we conduct the first attempt to extract the adaptive features from Time Series Stream based on the Test-then-Train strategy, which is applicable in both contexts: a) under stable concept, learning model will be updated incrementally; b) for data source with Concept Drift, previous concepts that do not represent the current stream behavior will be discarded from the model.
With the rapid advancements of sensor technologies and mobile computing, Mobile Crowd Sensing (MCS) has emerged as a new paradigm to collect massive-scale rich trajectory data. Nomadic sensors empower people and objects with the capability of reporting and sharing observations on their state, their behavior and/or their surrounding environments. Processing and mining multi-source sensor data in MCS raise several challenges due to their multi-dimensional nature where the measured parameters (i.e., dimensions) may differ in terms of quality, variability, and time scale. We consider the context of air quality MCS and focus on the task of mining the micro-environment from the MCS data. Relating the measures to their micro-environment is crucial to interpret them and analyse the participant's exposure properly. In this paper, we focus on the problem of investigating the feasibility of recognizing the human's micro-environment in an environmental MCS scenario. We propose a novel approach for learning and predicting the micro-environment of users from their trajectories enriched with environmental data represented as multidimensional time series plus GPS tracks. We put forward a multi-view learning approach that we adapt to our context, and implement it along with other time series classification approaches. We extend the proposed approach to a hybrid method that employs trajectory segmentation to bring the best of both methods. We optimise the proposed approaches either by analysing the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.