In order to prevent illegal intrusion, theft, and destruction, important places require stable and reliable human intrusion detection technology to maintain security. In this paper, a combined sensing system using anti-jamming random code signals is proposed and demonstrated experimentally to detect the human intruder in the protected area. This sensing system combines the leaky coaxial cable (LCX) sensor and the single-transmitter-double-receivers (STDR) radar sensor. They transmit the orthogonal physical random code signals generated by Boolean chaos as the detection signals. The LCX sensor realizes the early intrusion alarm at the protected area boundary by comparing the correlation traces before and after intrusion. Meanwhile, the STDR radar sensor is used to track the intruder’s moving path inside the protected area by correlation ranging and ellipse positioning, as well as recognizing intruder’s activities by time-frequency analysis, feature extraction, and support vector machine. The experimental results demonstrate that this combined sensing system not only realizes the early alarm and path tracking for the intruder with the 13 cm positioning accuracy, but also recognizes the intruder’s eight activities including squatting, picking up, jumping, waving, walking forward, running forward, walking backward, and running backward with 98.75% average accuracy. Benefiting from the natural randomness and auto-correlation of random code signal, the proposed sensing system is also proved to have a large anti-jamming tolerance of 27.6 dB, which can be used in the complex electromagnetic environment.
Ground-penetrating radar (GPR) is an effective geophysical electromagnetic method for underground target detection. However, the target response is usually overwhelmed by strong clutter, thus damaging the detection performance. To account for the nonparallel case of the antennas and the ground surface, a novel GPR clutter-removal method based on weighted nuclear norm minimization (WNNM) is proposed, which decomposes the B-scan image into a low-rank clutter matrix and a sparse target matrix by using a non-convex weighted nuclear norm and assigning different weights to different singular values. The WNNM method’s performance is evaluated using both numerical simulations and experiments with real GPR systems. Comparative analysis with the commonly used state-of-the-art clutter removal methods is also conducted in terms of the peak signal-to-noise ratio (PSNR) and the improvement factor (IF). The visualization and quantitative results demonstrate that the proposed method outperforms the others in the nonparallel case. Moreover, it is about five times faster than the RPCA, which is beneficial for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.