In this paper, we consider a scenario where an energy harvesting sensor continuously monitors a system and sends time-stamped status updates to a destination. The destination keeps track of the system status through the received updates. We use the metric Age of Information (AoI), the time that has elapsed since the last received update was generated, to measure the "freshness" of the status information available at the destination. We assume energy arrives randomly at the sensor according to aPoisson process, and each status update consumes one unit of energy. Our objective is to design optimal online status update policies to minimize the long-term average AoI, subject to the energy causality constraint at the sensor. We consider three scenarios, i.e., the battery size is infinite, finite, and one unit only, respectively.For the infinite battery scenario, we adopt a best-effort uniform status update policy and show that it minimizes the long-term average AoI. For the finite battery scenario, we adopt an energy-aware adaptive status update policy, and prove that it is asymptotically optimal when the battery size goes to infinity.For the last scenario where the battery size is one, we first show that within a broadly defined class of online policies, the optimal policy should have a renewal structure, i.e., the status update epochs form a renewal process, and the length of each renewal interval depends on the first energy arrival over that interval only. We then focus on a renewal interval, and prove that if the AoI in the system is below a threshold when the first energy arrives, the sensor should store the energy and hold status update until the AoI reaches the threshold; otherwise, it updates the status immediately. We analytically characterize the long-term average AoI under such a threshold-based policy, and explicitly identify the optimal threshold. Simulation results corroborate the theoretical bounds.
Through their unique and specific interactions with various metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. Inspired by natural metallopeptides, chemists have developed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing nanostructures. However, the design of new coordination peptides requires a deep understanding of the structures, assembly properties, and dynamic behaviours of such peptides. This review briefly discusses strategies of peptide self-assembly induced by metal coordination to different natural and non-natural binding sites in the peptide. The structures and functions of the obtained aggregates are described as well. We also highlight some examples of a metal-induced peptide self-assembly with relevance to biotechnology applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.