Phylogenetic positions of the genus Longgenacris and one of its members, i.e. L . rufiantennus are controversial. The species boundaries within both of L . rufiantennus + Fruhstorferiola tonkinensis and F . viridifemorata species groups are unclear. In this study, we explored the phylogenetic positions of the genus Longgenacris and the species L . rufiantennus and the relationships among F . viridifemorata group based on the 658-base fragment of the mitochondrial gene cytochrome c oxidase subunit I ( COI ) barcode and the complete sequences of the internal transcribed spacer regions ( ITS1 and ITS2 ) of the nuclear ribosomal DNA. The phylogenies were reconstructed in maximum likelihood framework using IQ-TREE. K2P distances were used to assess the overlap range between intraspecific variation and interspecific divergence. Phylogenetic species concept and NJ tree, K2P distance, the statistical parsimony network as well as the generalized mixed Yule coalescent model (GMYC) were employed to delimitate the species boundaries in L . rufiantennus + F . tonkinensis and F . viridifemorata species groups. The results demonstrated that the genus Longgenacris should be placed in the subfamily Melanoplinae but not Catantopinae, and L . rufiantennus should be a member of the genus Fruhstorferiola but not Longgenacris . Species boundary delimitation confirmed the presence of oversplitting in L . rufiantennus + F . tonkinensis and F . viridifemorata species groups and suggested that each group should be treated as a single species.
Many taxa in the Acrididae have controversial phylogenetic positions. A typical example of such controversies is the phylogenetic positions of the genera Caryandoides, Paratoacris, Fer and Longchuanacris, as well as some other related taxa, which were placed in Oxyinae by some authors, but were considered members of the subfamily Catantopinae by others. In this study, the complete mitogenomes of nine species were sequenced using next-generation sequencing, the characteristics of the newly sequenced mitogenomes are presented briefly, and the phylogeny of the Oxyinae and Catantopinae are reconstructed using a selected dataset of mitogenome sequences under maximum likelihood and Bayesian inference frameworks. The results show that the four controversial genera were consistently assigned to the subfamily Oxyinae rather than Catantopinae in all phylogenetic trees deduced from different datasets under different frameworks, and this finding is entirely consistent with their morphological characters. Therefore, it is more appropriate to place them in Oxyinae rather than Catantopinae. In addition, the results from our analysis also confirm the membership of the genus Apalacris in Coptacrinae rather than Catantopinae, and indicate the uncertainty in the phylogenetic position of the genus Traulia, and a more in-depth study is necessary to resolve the relationship of Traulia with other catantopine groups or Coptacrinae.
Tonkinacris is a small group in Acrididae. While a few species were occasionally sampled in some previous molecular studies, there is no revisionary research devoted to the genus. In this study, we explored the phylogeny of and the relationships among Chinese species of the genus Tonkinacris using the mitochondrial COI barcode and the complete sequences of ITS1 and ITS2 of the nuclear ribosomal DNA. The phylogeny was reconstructed in maximum likelihood and Bayesian inference frameworks, respectively. The overlap range between intraspecific variation and interspecific divergence was assessed via K2P distances. Species boundaries were delimitated using phylogenetic species concept, NJ tree, K2P distance, the statistical parsimony network as well as the GMYC model. The results demonstrate that the Chinese Tonkinacris species is a monophyletic group and the phylogenetic relationship among them is (T. sinensis, (T. meridionalis, (T. decoratus, T. damingshanus))). While T. sinensis, T. meridionalis and T. decoratus were confirmed being good independent species strongly supported by both morphological and molecular evidences, the validity of T. damingshanus was not perfectly supported by molecular evidence in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.