Accurately locating the fovea is a prerequisite for developing computer aided diagnosis (CAD) of retinal diseases. In colour fundus images of the retina, the fovea is a fuzzy region lacking prominent visual features and this makes it difficult to directly locate the fovea. While traditional methods rely on explicitly extracting image features from the surrounding structures such as the optic disc and various vessels to infer the position of the fovea, deep learning based regression technique can implicitly model the relation between the fovea and other nearby anatomical structures to determine the location of the fovea in an end-to-end fashion. Although promising, using deep learning for fovea localisation also has many unsolved challenges. In this paper, we present a new end-to-end fovea localisation method based on a hierarchical coarse-to-fine deep regression neural network. The innovative features of the new method include a multi-scale feature fusion technique and a selfattention technique to exploit location, semantic, and contextual information in an integrated framework, a multi-field-of-view (multi-FOV) feature fusion technique for context-aware feature learning and a Gaussian-shift-cropping method for augmenting effective training data. We present extensive experimental results on two public databases and show that our new method achieved state-of-the-art performances. We also present a comprehensive ablation study and analysis to demonstrate the technical soundness and effectiveness of the overall framework and its various constituent components.
One of the methods for stratifying different molecular classes of breast cancer is the Nottingham Prognostic Index Plus (NPI+) which uses breast cancer relevant biomarkers to stain tumour tissues prepared on tissue microarray (TMA). To determine the molecular class of the tumour, pathologists will have to manually mark the nuclei activity biomarkers through a microscope and use a semi-quantitative assessment method to assign a histochemical score (H-Score) to each TMA core. Manually marking positively stained nuclei is a time consuming, imprecise and subjective process which will lead to inter-observer and intra-observer discrepancies. In this paper, we present an end-to-end deep learning system which directly predicts the H-Score automatically. Our system imitates the pathologists' decision process and uses one fully convolutional network (FCN) to extract all nuclei region (tumour and non-tumour), a second FCN to extract tumour nuclei region, and a multi-column convolutional neural network which takes the outputs of the first two FCNs and the stain intensity description image as input and acts as the high-level decision making mechanism to directly output the H-Score of the input TMA image. To the best of our knowledge, this is the first end-to-end system that takes a TMA image as input and directly outputs a clinical score. We will present experimental results which demonstrate that the H-Scores predicted by our model have very high and statistically significant correlation with experienced pathologists' scores and that the H-Score discrepancy between our algorithm and the pathologists is on par with the inter-subject discrepancy between the pathologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.