Sustainable financial education is defined as the continuous input of money and time on financial knowledge education after formal schooling. The purpose of this paper is to examine the impact of sustainable financial education on consumer life satisfaction. Utilizing the dataset of Household Consumer Finance of Chinese Urban Residents in 2012 by the China Financial Research Center of Tsinghua University, the variable of sustainable financial education is constructed through the variables of the necessity of financial education, the money spent on financial education, and the time spent on financial education. To improve the estimation results, order probit regression is utilized. The results indicate that financial education is significantly positive to consumer life satisfaction only for a consumer with higher education. Consumers who regard financial education to be of high necessity will feel more satisfied. The results also show that consumers who spend more money and time on financial education after formal schooling will be more satisfied. Moreover, the sustainable impacts of financial education on consumer life satisfaction are verified. In addition, this study provides empirical evidence that suggests that sustainable financial education positively contributes to consumer life satisfaction. The results have implications for policymakers to take measures in enhancing sustainable financial education to improve consumer life satisfaction.
Among the methods of hand function rehabilitation after stroke, robot-assisted rehabilitation is widely used, and the use of hand rehabilitation robots can provide functional training of the hand or assist the paralyzed hand with activities of daily living. However, patients with hand disorders consistently report that the needs of some users are not being met. The purpose of this review is to understand the reasons why these user needs are not being adequately addressed, to explore research on hand rehabilitation robots, to review their current state of research in recent years, and to summarize future trends in the hope that it will be useful to researchers in this research area. This review summarizes the techniques in this paper in a systematic way. We first provide a comprehensive review of research institutions, commercial products, and literature. Thus, the state of the art and deficiencies of functional hand rehabilitation robots are sought and guide the development of subsequent hand rehabilitation robots. This review focuses specifically on the actuation and control of hand functional rehabilitation robots, as user needs are primarily focused on actuation and control strategies. We also review hand detection technologies and compare them with patient needs. The results show that the trends in recent years are more inclined to pursue new lightweight materials to improve hand adaptability, investigating intelligent control methods for human-robot interaction in hand functional rehabilitation robots to improve control robustness and accuracy, and VR virtual task positioning to improve the effectiveness of active rehabilitation training.
Stroke is one of the most prevalent health issues that people face today, causing long-term complications such as paresis, hemiparesis, and aphasia. These conditions significantly impact a patient’s physical abilities and cause financial and social hardships. In order to address these challenges, this paper presents a groundbreaking solution—a wearable rehabilitation glove. This motorized glove is designed to provide comfortable and effective rehabilitation for patients with paresis. Its unique soft materials and compact size make it easy to use in clinical settings and at home. The glove can train each finger individually and all fingers together, using assistive force generated by advanced linear integrated actuators controlled by sEMG signals. The glove is also durable and long-lasting, with 4–5 h of battery life. The wearable motorized glove is worn on the affected hand to provide assistive force during rehabilitation training. The key to this glove’s effectiveness is its ability to perform the classified hand gestures acquired from the non-affected hand by integrating four sEMG sensors and a deep learning algorithm (the 1D-CNN algorithm and the InceptionTime algorithm). The InceptionTime algorithm classified ten hand gestures’ sEMG signals with an accuracy of 91.60% and 90.09% in the training and verification sets, respectively. The overall accuracy was 90.89%. It showed potential as a tool for developing effective hand gesture recognition systems. The classified hand gestures can be used as a control command for the motorized wearable glove placed on the affected hand, allowing it to mimic the movements of the non-affected hand. This innovative technology performs rehabilitation exercises based on the theory of mirror therapy and task-oriented therapy. Overall, this wearable rehabilitation glove represents a significant step forward in stroke rehabilitation, offering a practical and effective solution to help patients recover from stroke’s physical, financial, and social impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.