As mobile mapping systems become a mature technology, there are many applications for the process of the measured data. One interesting application is the use of driving simulators that can be used to analyze the data of tire vibration or vehicle simulations. In previous research, we presented our proposed method that can create a precise three-dimensional point cloud model of road surface regions and trajectory points. Our data sets were obtained by a vehicle-mounted mobile mapping system (MMS). The collected data were converted into point cloud data and color images. In this paper, we utilize the previous results as input data and present a solution that can generate an elevation grid for building an OpenCRG model. The OpenCRG project was originally developed to describe road surface elevation data, and also defined an open file format. As it can be difficult to generate a regular grid from point cloud directly, the road surface is first divided into straight lines, circular arcs, and and clothoids. Secondly, a non-regular grid which contains the elevation of road surface points is created for each road surface segment. Then, a regular grid is generated by accurately interpolating the elevation values from the non-regular grid. Finally, the curved regular grid (CRG) model files are created based on the above procedures, and can be visualized by OpenCRG tools. The experimental results on real-world data show that the proposed approach provided a very-high-resolution road surface elevation model.
When we drive a car, the white lines on the road show us where the lanes are. The lane marks act as a reference for where to steer the vehicle. Naturally, in the field of advanced driver-assistance systems and autonomous driving, lane-line detection has become a critical issue. In this research, we propose a fast and precise method that can create a three-dimensional point cloud model of lane marks. Our datasets are obtained by a vehicle-mounted mobile mapping system (MMS). The input datasets include point cloud data and color images generated by laser scanner and CCD camera. A line-based point cloud region growing method and image-based scan-line method are used to extract lane marks from the input. Given a set of mobile mapping data outputs, our approach takes advantage of all important clues from both the color image and point cloud data. The line-based point cloud region growing is used to identify boundary points, which guarantees a precise road surface region segmentation and boundary points extraction. The boundary points are converted into 2D geometry. The image-based scan line algorithm is designed specifically for environments where it is difficult to clearly identify lane marks. Therefore, we use the boundary points acquired previously to find the road surface region from the color image. The experiments show that the proposed approach is capable of precisely modeling lane marks using information from both images and point cloud data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.