Functionalized dendrimer-like hybrid silica nanoparticles with hierarchical pores are designed and synthesized. The unique structure, large surface area, and excellent biocompability render such materials attractive nanocarriers for the advanced delivery of various sized drugs and genes simultaneously.
Chinese hamster ovary cells have been engineered to inducibly over-express the p21(CIP1) cyclin-dependent kinase inhibitor, to achieve cell cycle arrest and increase cell productivity. In p21(CIP1)-arrested cells production of antibody from a stably integrated lgG4 gene, was enhanced approximately fourfold. The underlying physiological basis for enhanced productivity was investigated by measuring a range of cellular and metabolic parameters. Interestingly, the average cell volume of arrested cells was approximately fourfold greater than that of proliferating cells. This was accompanied by significant increases in mitochondrial mass, mitochondrial activity, and ribosomal protein S6 levels. Our results suggest that p21(CIP1)-induced cell cycle arrest uncouples cell growth from cell-cycle progression, and provides new insight into how improved productivity can be achieved in a cell line commonly used for large-scale production of pharmaceutical proteins.
A novel type of magnetic core-shell silica nanoparticles is developed for small interfering RNA (siRNA) delivery. These nanoparticles are fabricated by coating super-paramagnetic magnetite nanocrystal clusters with radial large-pore mesoporous silica. The amine functionalized nanoparticles have small particle sizes around 150 nm, large radial mesopores of 12 nm, large surface area of 411 m(2) g(-1) , high pore volume of 1.13 cm(3) g(-1) and magnetization of 25 emu g(-1) . Thus, these nanoparticles possess both high loading capacity of siRNA (2 wt%) and strong magnetic response under an external magnetic field. An acid-liable coating composed of tannic acid can further protect the siRNA loaded in these nanoparticles. The coating also increases the dispersion stability of the siRNA-loaded carrier and can serve as a pH-responsive releasing switch. Using the magnetic silica nanoparticles with tannic acid coating as carriers, functional siRNA has been successfully delivered into the cytoplasm of human osteosarcoma cancer cells in vitro. The delivery is significantly enhanced with the aid of the external magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.