In broiler chicks, Escherichia coli lipopolysaccharide is a prominent cause for inflammatory damage and loss of immune homeostasis in broiler chicks. Ginsenosides have been shown to have anti-inflammatory and antioxidant effects. However, it has not been demonstrated that ginsenosides protect broiler chicks against stress induced by Escherichia coli lipopolysaccharide challenge. The aim of this is to investigate the protective effect of ginsenosides Rg1, Re, and Rg3 on Escherichia coli lipopolysaccharide-induced stress. Our results showed that Rg3 ameliorated growth inhibition and fever, as well as decreased the production of stress-related hormones in broilers with stress. The protective effect of Rg3 on the stressed chicks may be largely mediated by regulating inflammatory response and oxidative damage. Moreover, real-time quantitative-polymerase chain reaction (RT-qPCR) results demonstrated that Rg3 upregulated mRNA expression of mTOR, HO-1, and SOD-1. These results suggested that ginsenoside Rg3 and ginsenoside products contains Rg3 deserve further study for the control of immunological stress and inflammation in broiler chicks.
Glycosylation reaction involving the coupling of a glycosyl donor with a glycosyl acceptor is one of the cornerstones of chemical preparation of pure glycans and glycoconjugates of biological relevance. Catalytic glycosylation of glycosyl ester donors and thioglycosides is an attractive but underexplored topic in carbohydrate chemistry. Herein, triflic imide (Tf 2 NH)catalyzed glycosylation of various O-, S-, and C-nucleophiles has been achieved using disarmed glycosyl ortho-isopropenylphenylacetates (GIPPAs) and ortho-isopropenylbenzyl thioglycosides as glycosylating agents. The reactions proceed under mild conditions to give the desired glycosides in good-to-excellent yields. Of particular note, the comparable reactivity for the αisomers and the β-ones of GIPPAs is observed. The mechanistic investigation demonstrates that the isopropenyl group is essential for the reaction and its preferential protonation triggers the reaction. This work provides another member to the arsenals of glycosyl ester and thioglycoside donors suitable for acid-catalyzed glycosylation to create various glycosidic bonds.
Aim: Fusidic acid (FA) is an effective antibiotic against Staphylococcus aureus, but it is metabolically unstable. Methods & results: 14 derivatives were designed and synthesized by blocking the metabolic sites of FA (21-COOH and 3-OH) to maintain antibacterial activity and prolong the half-life. Six derivatives showed good antibacterial activity, and the pharmacokinetic experiments confirmed that two derivatives modified in 21-COOH released FA in vivo and showed longer half-lives than FA. Docking analysis and structure–activity relationships indicated that the 3-glycine derivatives with more hydrogen-bonding acceptor sites and positively charged surface areas were more likely to have good antibacterial activity. Conclusion: The results suggest that introducing groups that block the metabolic sites of FA could maintain antibacterial activity and prolong the half-lives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.