Abstract-For the typical optimal problem of task scheduling in cloud computing, this paper proposes a novel resource scheduling algorithm based on Social Learning Optimization Algorithm (SLO). SLO is a new swarm intelligence algorithm which is proposed by simulating the evolution process of human intelligence and has better optimization mechanism and optimization performance. This paper proposes two learning operators for task scheduling in cloud computing after analyzing the characteristics of the problem of task scheduling; then, by introducing the Small Position Value (SPV) method, the two learning operators with continuous nature essence are enabled to solve the problem of task scheduling, and then the improved SLO is employed to solve the problem of cloud resource optimal scheduling. Finally, the performance of improved SLO is compared with existing research work on the CloudSim platform. Experimental results show that the approach proposed in this paper has better global optimization ability and convergence speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.