Recently, 2D materials are in great demand for various applications such as optical devices, supercapacitors, sensors, and biomedicine. MXenes as a kind of novel 2D material have attracted considerable research interest due to their outstanding mechanical, thermal, electrical, and optical properties. Especially, the excellent nonlinear optical response enables them to be potential candidates for the applications in ultrafast photonics. Here, a review of MXenes synthesis, optical properties, and applications in ultrafast lasers is presented. First, aqueous acid etching and chemical vapor deposition methods for preparing MXenes are introduced, in which the storage stability and challenges of the existing synthesis techniques are also discussed. Then, the optical properties of MXenes are discussed specifically, including plasmonic properties, optical detection, photothermal effects, and ultrafast dynamics. Furthermore, the typical ultrafast pulsed lasers enabled by MXene-based saturable absorbers operated at different wavelength regions are summarized. Finally, a summary and outlook on the development of MXenes is presented in the perspectives section.
AbstractSince graphene was first reported as a saturable absorber to achieve ultrafast pulses in fiber lasers, many other two-dimensional (2D) materials, such as topological insulators, transition metal dichalcogenides, black phosphorus, and MXenes, have been widely investigated in fiber lasers due to their broadband operation, ultrafast recovery time, and controllable modulation depth. Recently, solution-processing methods for the fabrication of 2D materials have attracted considerable interest due to their advantages of low cost, easy fabrication, and scalability. Here, we review the various solution-processed methods for the preparation of different 2D materials. Then, the applications and performance of solution-processing-based 2D materials in fiber lasers are discussed. Finally, a perspective of the solution-processed methods and 2D material-based saturable absorbers are presented.
We report on a Q-switched Yb-doped all-fiber laser based on a solution-processed Ag nanoplates saturable absorber. Optical deposition procedure is implemented to transfer the Ag nanoplates onto the fiber core area through the thermal effect. The saturable absorber is sandwiched between two fiber connectors, providing simplicity, flexibility, and easy integration into the laser oscillator. The modulation depth and saturation incident fluence are measured to be ~5.8% and ~106.36 μJ/cm2 at 1-μm region, respectively. Self-started stable Q-switched operation is achieved for a threshold pump power of 180 mW. The repetition rates of the pulse trains range from 66.6 to 184.8 kHz when the pump power scales from 210 to 600 mW. The maximum average output power is 10.77 mW, corresponding to the single-pulse energy of 58.3 nJ and minimum pulse duration of ~1.01 μs. To the best of our knowledge, it is the first time that the Ag nanoplates saturable absorbers are utilized in the 1-μm Yb-doped Q-switched fiber laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.