The global shortening of mRNAs through alternative polyadenylation (APA) that occurs during enhanced cellular proliferation represents an important, yet poorly understood mechanism of regulated gene expression1,2. The 3′UTR truncation of growth promoting mRNA transcripts that relieves intrinsic microRNA- and AU-rich element-mediated repression has been observed to correlate with cellular transformation3; however, the importance to tumorigenicity of RNA 3′ end processing factors that potentially govern APA is unknown. Here, we have identified CFIm25 as a broad repressor of proximal poly(A) site usage that, when depleted, increases cell proliferation. Applying a regression model on standard RNA-seq data for novel APA events, we identified at least 1,450 genes with shortened 3′UTRs after CFIm25 knockdown, representing 11% of significantly expressed mRNA in HeLa cells. Dramatic increases in expression of several known oncogenes including Cyclin D1 are observed as a consequence of CFIm25 depletion. Importantly, we identified a subset of CFIm25-regulated APA genes with shortened 3′UTRs in glioblastoma (GBM) tumors that have reduced CFIm25 expression. Downregulation of CFIm25 expression in glioblastoma cells enhances their tumorigenic properties and increases tumor size while CFIm25 overexpression reduces these properties and inhibits tumor growth. These findings identify a pivotal role of the CFIm25 in governing APA and reveal a previously unknown connection between CFIm25 and glioblastoma tumorigenicity.
Purpose: Long noncoding RNAs have been implicated in gliomagenesis, but their mechanisms of action are mainly undocumented. Through public glioma mRNA expression data sets, we found that NEAT1 was a potential oncogene. We systematically analyzed the clinical significance and mechanism of NEAT1 in glioblastoma.Experimental Design: Initially, we evaluated whether NEAT1 expression levels could be regulated by EGFR pathway activity. We subsequently evaluated the effect of NEAT1 on the WNT/ b-catenin pathway and its target binding gene. The animal model supported the experimental findings.Results: We found that NEAT1 levels were regulated by EGFR pathway activity, which was mediated by STAT3 and NFkB (p65) downstream of the EGFR pathway. Moreover, we found that NEAT1 was critical for glioma cell growth and invasion by increasing b-catenin nuclear transport and downregulating ICAT, GSK3B, and Axin2. Taken together, we found that NEAT1 could bind to EZH2 and mediate the trimethylation of H3K27 in their promoters. NEAT1 depletion also inhibited GBM cell growth and invasion in the intracranial animal model.Conclusions: The EGFR/NEAT1/EZH2/b-catenin axis serves as a critical effector of tumorigenesis and progression, suggesting new therapeutic directions in glioblastoma. Clin Cancer Res; 1-12.Ó2017 AACR.
Glioblastoma multiforme (GBM) is the most malignant and aggressive type of brain tumor with an average life expectancy of less than 15 months. This is mostly due to the highly mutated genome of GBM, which is characterized by the deregulation of many key signaling pathways involving growth, proliferation, survival, and apoptosis. It is critical to explore novel diagnostic and therapeutic strategies that target these pathways to improve the treatment of malignant glioma in the future. This review summarizes the most common and important pathways that are highly mutated or deregulated in GBM and discusses potential therapeutic strategies targeting these pathways.
Introduction
Pancreatic cancer has the worst survival rate of all cancers. The current standard care for metastatic pancreatic cancer is gemcitabine, however, the success of this treatment is poor and overall survival has not improved for decades. Drug resistance (both intrinsic and acquired) is thought to be a major reason for the limited benefit of most pancreatic cancer therapies.
Areas covered
Previous studies have indicated various mechanisms of drug resistance in pancreatic cancer, including changes in individual genes or signaling pathways, the influence of the tumor microenvironment, and the presence of highly resistant stem cells. This review summarizes recent advances in the mechanisms of drug resistance in pancreatic cancer, and potential strategies to overcome this.
Expert Opinion
Increasing drug delivery efficiency and decreasing drug resistance is the current aim in pancreatic cancer treatment, and will also benefit the treatment of other cancers. Understanding the molecular and cellular basis of drug resistance in pancreatic cancer will lead to the development of novel therapeutic strategies with the potential to sensitize pancreatic cancer to chemotherapy, and to increase the efficacy of current treatments in a wide variety of human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.