In this paper, the key technology of interferometric microwave thermometer is studied, the research can be applied to the temperature measurement of human body and subcutaneous tissue. This paper proposes a hardware architecture of interferometric microwave thermometer with 2 GHz bandwidth, in which the phase shifter is used to correct phase error and the quadrature demodulator is used to realize autocorrelation detection function. The results show that when input power is 7 dBm, the detection sensitivity can reach 176.54 mV/dBm and the temperature resolution of the microwave radiometer can reach 0.4 K. Correction algorithm is designed to improve the accuracy of temperature measurement. After correction, the phase error is reduced from 40° to 1.4° and when temperature changes 0.1 °C, the voltage value changes obviously. Step-by-step calibration and overall calibration are used to calibrate the device. Inversion algorithm can determine the relationship between physical temperature and output voltage. The mean square error of water temperature inversion by multiple linear regression algorithm is 0.607 and that of BP neural network algorithm is 0.334. The inversion accuracy can be improved by reducing the temperature range. Our work provides a promising realization of accurate, rapid and non-contact detection device of human body temperature.
In this paper, a multiband noncontact temperature-measuring microwave radiometer system is developed. The system can passively receive the microwave signal of the core temperature field of the human body without removing the clothes of the measured person. In order to accurately measure the actual temperature of multilayer tissue in human core temperature field, four frequency bands of 4–6 GHz, 8–12 GHz, 12–16 GHz, and 14–18 GHz were selected for multifrequency design according to the internal tissue depth model of human body and the relationship between skin depth and electromagnetic frequency. Used to measure the actual temperature of human epidermis, dermis, and subcutaneous tissue, a small and highly directional multiband angular horn antenna was designed for the radiometer front end. After the error analysis of the full-power microwave radiometer, a novel hardware architecture of the microwave interferometric temperature-measuring radiometer is proposed, and it is proven that the novel interferometric microwave radiometer has less error uncertainty through theoretical deduction. The experimental results show that the maximum detection sensitivity of the novel interferometric microwave temperature-measuring radiometer is 215 mV/dBm, and the temperature sensitivity is 0.047 K/mV. Compared with the scheme of the full-power radiometer, the detection sensitivity is increased 7.45-fold, and the temperature sensitivity is increased 13.89-fold.
A parallel factor analysis (PARAFAC) based beamformer using a polarization sensitive array of co-centered orthogonal loop and dipole (COLD) vector antennas is proposed for near-field or far-field source signals. While joint suppression of the interferences in the direction, polarization, and range domains is achieved, the beamformer needs only one of the following source knowledge (maybe inaccurate) about signal of interest (SOI): direction, polarization, and range. The beamformer is robust to the error in the sample estimates of SOI steering vector and array covariance matrix via eigenvalue smoothing regularization. A minimum mean squared error criterion for choosing adaptively the regularization factor in eigenvalue smoothing is also presented for noncircular SOI. Simulation results are included to illustrate the performance of the proposed beamformer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.