Recently, segmentation neural networks have been significantly improved by demonstrating very promising accuracies on public benchmarks. However, these models are very heavy and generally suffer from low inference speed, which limits their application scenarios in practice. Meanwhile, existing fast segmentation models usually fail to obtain satisfactory segmentation accuracies on public benchmarks. In this paper, we propose a teacher-student learning framework that transfers the knowledge gained by a heavy and better performed segmentation network (i.e. teacher) to guide the learning of fast segmentation networks (i.e. student). Specifically, both zero-order and first-order knowledge depicted in the fine annotated images and unlabeled auxiliary data are transferred to regularize our student learning. The proposed method can improve existing fast segmentation models without incurring extra computational overhead, so it can still process images with the same fast speed. Extensive experiments on the Pascal Context, Cityscape and VOC 2012 datasets demonstrate that the proposed teacher-student learning framework is able to significantly boost the performance of student network.
Localizing text instances in natural scenes is regarded as a fundamental challenge in computer vision. Nevertheless, owing to the extremely varied aspect ratios and scales of text instances in real scenes, most conventional text detectors suffer from the sub-text problem that only localizes the fragments of text instance (i.e., sub-texts). In this work, we quantitatively analyze the sub-text problem and present a simple yet effective design, COntrastive RElation (CORE) module, to mitigate that issue. CORE first leverages a vanilla relation block to model the relations among all text proposals (subtexts of multiple text instances) and further enhances relational reasoning via instance-level sub-text discrimination in a contrastive manner. Such way naturally learns instance-aware representations of text proposals and thus facilitates scene text detection. We integrate the CORE module into a twostage text detector of Mask R-CNN and devise our text detector CORE-Text. Extensive experiments on four benchmarks demonstrate the superiority of CORE-Text. Code is available: https://github.com/jylins/CORE-Text.
Localizing text instances in natural scenes is regarded as a fundamental challenge in computer vision. Nevertheless, owing to the extremely varied aspect ratios and scales of text instances in real scenes, most conventional text detectors suffer from the sub-text problem that only localizes the fragments of text instance (i.e., sub-texts). In this work, we quantitatively analyze the sub-text problem and present a simple yet effective design, COntrastive RElation (CORE) module, to mitigate that issue. CORE first leverages a vanilla relation block to model the relations among all text proposals (subtexts of multiple text instances) and further enhances relational reasoning via instance-level sub-text discrimination in a contrastive manner. Such way naturally learns instanceaware representations of text proposals and thus facilitates scene text detection. We integrate the CORE module into a two-stage text detector of Mask R-CNN and devise our text detector CORE-Text. Extensive experiments on four benchmarks demonstrate the superiority of CORE-Text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.