Robotic weeding enables weed control near or within crop rows automatically, precisely and effectively. A computer‐vision system was developed for detecting crop plants at different growth stages for robotic weed control. Fusion of color images and depth images was investigated as a means of enhancing the detection accuracy of crop plants under conditions of high weed population. In‐field images of broccoli and lettuce were acquired 3–27 days after transplanting with a Kinect v2 sensor. The image processing pipeline included data preprocessing, vegetation pixel segmentation, plant extraction, feature extraction, feature‐based localization refinement, and crop plant classification. For the detection of broccoli and lettuce, the color‐depth fusion algorithm produced high true‐positive detection rates (91.7% and 90.8%, respectively) and low average false discovery rates (1.1% and 4.0%, respectively). Mean absolute localization errors of the crop plant stems were 26.8 and 7.4 mm for broccoli and lettuce, respectively. The fusion of color and depth was proved beneficial to the segmentation of crop plants from background, which improved the average segmentation success rates from 87.2% (depth‐based) and 76.4% (color‐based) to 96.6% for broccoli, and from 74.2% (depth‐based) and 81.2% (color‐based) to 92.4% for lettuce, respectively. The fusion‐based algorithm had reduced performance in detecting crop plants at early growth stages.
Weed management and control are essential for the production of high-yielding and high-quality crops, and advances in weed control technology have had a huge impact on agricultural productivity. Any effective weed control technology needs to be both robust and adaptable. Robust weed control technology will successfully control weeds in spite of variability in the field conditions. Adaptable weed control technology has the capacity to change its strategy in the context of evolving weed populations, genetics, and climatic conditions. This chapter focuses on key work in the development of robotic weeders, including weed perception systems and weed control mechanisms. Following an extensive introduction, the chapter addresses the challenges of robotic weed control focusing on both perception systems, which can detect and classify weed plants from crop plants, and also weed control mechanisms, covering both chemical and mechanical weed control. A case study of an automated weeding system is provided. Disciplines Agricultural Economics | Agriculture | Bioresource and Agricultural Engineering | Robotics Comments This chapter is published as Steward, Brian, Jingyao Gai, and Lie Tang. "The use of agricultural robots in weed management and control. " In Robotics and automation for improving agriculture, edited by
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.