Establishment of a functional vascular network is rate-limiting in embryonic development, tissue repair and engineering. During blood vessel formation, newly generated endothelial cells rapidly expand into primitive plexi that undergo vascular remodeling into circulatory networks, requiring coordinated growth inhibition and arterial-venous specification. Whether the mechanisms controlling endothelial cell cycle arrest and acquisition of specialized phenotypes are interdependent is unknown. Here we demonstrate that fluid shear stress, at arterial flow magnitudes, maximally activates NOTCH signaling, which upregulates GJA4 (commonly, Cx37) and downstream cell cycle inhibitor CDKN1B (p27). Blockade of any of these steps causes hyperproliferation and loss of arterial specification. Re-expression of GJA4 or CDKN1B, or chemical cell cycle inhibition, restores endothelial growth control and arterial gene expression. Thus, we elucidate a mechanochemical pathway in which arterial shear activates a NOTCH-GJA4-CDKN1B axis that promotes endothelial cell cycle arrest to enable arterial gene expression. These insights will guide vascular regeneration and engineering.
Vascular tumors are among the most common neoplasms in infants and children; 5%-10% of newborns present with or develop lesions within the first 3 months of life. Most are benign infantile hemangiomas that typically regress by 5 years of age; other vascular tumors include congenital tufted angiomas (TAs), kaposiform hemangioendotheliomas (KHEs), and childhood lobular capillary hemangiomas (LCHs). Some of these lesions can become locally invasive and unresponsive to pharmacologic intervention, leading to significant complications. Recent investigation has revealed that activating mutations in HRAS, KRAS, NRAS, GNAQ, and GNA11 can cause certain types of rare childhood vascular tumors, and we have now identified causal recurrent somatic activating mutations in GNA14 by whole-exome and targeted sequencing. We found somatic activating GNA14 c.614A>T (p.Gln205Leu) mutations in one KHE, one TA, and one LCH and a GNA11 c.547C>T (p.Arg183Cys) mutation in two LCH lesions. We examined mutation pathobiology via expression of mutant GNA14 or GNA11 in primary human endothelial cells and melanocytes. GNA14 and GNA11 mutations induced changes in cellular morphology and rendered cells growth-factor independent by upregulating the MAPK pathway. Our findings identify GNA14 mutations as a cause of childhood vascular tumors, offer insight into mechanisms of oncogenic transformation by mutations affecting Gaq family members, and identify potential targets for therapeutic intervention.
The formation and remodeling of a functional circulatory system is critical for sustaining prenatal and postnatal life. During embryogenesis, newly differentiated endothelial cells require further specification to create the unique features of distinct vessel subtypes needed to support tissue morphogenesis. In this review, we explore signaling pathways and transcriptional regulators that modulate endothelial cell differentiation and specification, as well as applications of these processes to stem cell biology and regenerative medicine. We also summarize recent technical advances, including the growing utilization of single-cell sequencing to study vascular heterogeneity and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.