Abstract. The key to Autonomous Vehicles (AVs) successful penetration of markets lies in identifying specific needs that AVs satisfy for daily activity-travel participation of individuals. In this paper we explore whether and to what extent people’s exhibited spatiotemporal activity-travel patterns correlate with their stated perceptions about self-driving cars. We investigate the travel diaries of 3,411 survey respondents who live in the Puget Sound region of the U.S. in 2017 using sequence analysis. In parallel, we apply hierarchical clustering to identify people’s attitudes based on their stated interest and perception of risks about AVs. A multinomial regression model is built to examine the correlations between AV attitude clusters and daily activity-travel patterns. Statistically significant correlations are then identified. The model results suggest that people exhibiting different activity-travel behavior patterns also express distinct attitudes towards the uses of AVs. The model shows that people who travel to work during the day are more likely to be positive to AVs. In particular, the group traveling to work later than the regular 8-to-5 schedule shows stronger interest and less concerns to AVs, which can be partially explained by the diverse activities they do throughout the day, the variety of travel modes they use and presumably more schedule flexibility they need than the public transportation system offers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.