Background: Depressive disorder is a common affective disorder, also known as depression, which is characterized by sadness, loss of interest, feelings of guilt or low self-worth and poor concentration. As speech is easy to obtain non-offensively with low-cost, many researchers explore the possibility of depression prediction through speech. Adopting speech signals to recognize depression has important practical significance. Aiming at the problem of the complex structure of the deep neural network method used in the recognition of speech depression and the traditional machine learning methods need to manually extract the features and the low recognition rate. Methods: This paper proposes a model that combines residual thinking and attention mechanism. First, depression corpus is designed based on the classic psychological experimental paradigm self-reference effect (SRE), and the speech dataset is labeled; then the attention module is introduced into the residual, and the channel attention is used to learn the features of the channel dimension, the spatial attention feedback the features of the spatial dimension, and the combination of the two to obtain the attention residual unit; finally the stacking unit constructs a speech depression recognition model based on the attention residual network. Results: Experimental results show that compared with traditional machine learning methods, this model obtains better results in the recognition of depression, which can meet the need for actual recognition application of depression. Conclusions: In this study, we not only predict whether person is depressed, but also estimate the severity of depression. In the designed corpus, the depression binary classification of an individual is given based on the severity of depression which is measured using BDI-II scores. Experimental results show that spontaneous speech can obtain better results than automatic speech, and the classification of speech features corresponding to negative questions is better than other tasks under negative emotions. Besides, the recognition accuracy rate of both male and female subjects is higher than that under other emotions.
The widespread use of distributed energy sources (DERs) raises significant challenges for power system design, planning, and operation, leading to wide adaptation of tools on hosting capacity analysis (HCA). Traditional HCA methods conduct extensive power flow analysis. Due to the computation burden, these time-consuming methods fail to provide online hosting capacity (HC) in large distribution systems. To solve the problem, we first propose a deep learning-based problem formulation for HCA, which conducts offline training and determines HC in real time. The used learning model, long short-term memory (LSTM), implements historical time-series data to capture periodical patterns in distribution systems. However, directly applying LSTMs suffers from low accuracy due to the lack of consideration on spatial information, where location information like feeder topology is critical in nodal HCA. Therefore, we modify the forget gate function to dual forget gates, to capture the spatial correlation within the grid. Such a design turns the LSTM into the Spatial-Temporal LSTM (ST-LSTM). Moreover, as voltage violations are the most vital constraints in HCA, we design a voltage sensitivity gate to increase accuracy further. The results of LSTMs and ST-LSTMs on feeders, such as IEEE 34-, 123-bus feeders, and utility feeders, validate our designs.
Increasing renewable penetration in distribution grids calls for improved monitoring and control, where power flow (PF) model is the basis for many advanced functionalities. However, unobservability makes the traditional way infeasible to construct PF analysis via admittance matrix for many distribution grids. While data-driven approaches can approximate PF mapping, direct machine learning (ML) applications may suffer from several drawbacks. First, complex ML models like deep neural networks lack the degradability and explainability to the true system model, leading to overfitting. There are also asynchronization issues among different meters without GPS chips. Last but not least, bad data is quite common in the distribution grids. To resolve these problems all at once, we propose a variational support matrix regression (SMR). It provides structural learning to (1) embed kernels to regularize physical form in observable area while achieving good approximation at unobservable area, (2) integrate temporal information into matrix regression for asynchronized data imputation, and (3) define support matrix for margins to be robust against bad data. We test the performance for mapping rule learning via IEEE test systems and a utility distribution grid. Simulation results show high accuracy, degradability from data-driven model to physical model, and robustness to data quality issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.