Borneol, a monoterpenoid alcohol, is used widely, particularly in combined formulas for preventing and curing cardiovascular and cerebrovascular diseases in traditional Chinese medicine. In order to understand the blood and brain pharmacokinetics after intravenous, intranasal, or oral administration and to investigate the superiority and feasibility of intranasal administration, a simple gas chromatographic (GC) method with flame ionization detection (FID) was developed for the quantification of borneol. Blood samples and brain were collected from mice at 1, 3, 5, 10, 20, 30, 60, 90, and 120 min after intravenous, intranasal, or oral administration of borneol at a dosage of 30.0 mg/kg. Sample preparations were carried out by liquid-liquid extraction with an internal standard solution of octadecane. The pharmacokinetic parameters were calculated by the software of Kinetica. The calibration curves were linear in the range of 0.11-84.24 μg/ml and 0.16-63.18 μg/g for borneol in plasma and brain, respectively. The methodological and extraction recoveries were both in the range of 85%-115%. The intra-day and inter-day variabilities for plasma and brain samples were ≤5.00% relative standard deviation (RSD). The absolute bioavailabilities F of intranasal and oral administrations were 90.68% and 42.99%. The relative brain targeted coefficients Re of intranasal and oral administrations were 68.37% and 38.40%. The GC-FID method developed could be applied to determination and pharmacokinetic study. The borneol from injection was distributed and metabolized fast without absorption process. The borneol from oral administration was distributed more slowly and had the lowest absolute bioavailability. Nasal administration of borneol was quickly absorbed into the blood and brain, was easy to use and had a greater safety than infection, which makes it worthy of further development as an administration route for encephalopathy treatment.
Large eddy simulation was used to analyze the time-variation flow field in order to study the microvibration of an aerostatic thrust bearing with a pocketed orifice-type restrictor. It was found that the vortex shedding caused air pressure fluctuation, which was directly related to the occurrence of the vibration of the bearing. Furthermore, the influence of bearing parameters on the vibration was studied through numerical analysis and experiments. The results indicated that large eddy simulation could predict the vibration by calculating the air pressure fluctuation inside the bearing. Moreover, the vibration could be reduced if the bearing was featured with a small orifice diameter, a large bearing diameter, a shallow air chamber or a low supply pressure.
Additive manufacturing (AM) has attracted much attention due to its capability in building parts with complex geometries. Unfortunately, AM metals suffer from three major drawbacks, including high porosity, poor surface finish, and tensile residual stresses, all of which will significantly compromise the fatigue performance. These drawbacks present a major obstacle to the application of AM metals in industries that produce fatigue-sensitive components. Many post-processing methods, including heat treatment, hot isotropic pressing, laser shock peening, ultrasonic nanocrystal surface modification, advanced finishing and machining, and laser polishing, have been used to treat AM metals to decrease their porosity, improve the surface finish, and eliminate tensile residual stresses. As a result, significant improvement in fatigue performance has been observed. In this paper, the state of the art in utilizing post-processing techniques to treat AM metals and the effects of these treatments on the porosity, surface finish, and residual stresses of metal components and their resultant fatigue performance are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.