Considering the simple preparation of biochar and the excellent activation performance of cobalt ferrate material, a biochar supported cobalt ferrate composite was synthesized by a solvothermal method.
TiO2/hectorite composite photocatalysts with different molar ratios of lithium, magnesium, and silicon were synthesized by a one-pot hydrothermal method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherms, and ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS). When the molar ratio of lithium, magnesium, and silicon was 1.32:5.34:8 (TH-2), the composite showed the highest UV photocatalytic degradation of methylene blue (MB). The apparent rate constant of TH-2 was 0.04361 min−1, which was about 3.12 times that of EVONIK Degussa commercial TiO2 of AEROXIDE P25. The improvement of photocatalytic efficiency of the composite was mainly due to its high specific surface area, light trapping ability, and effective separation of electrons (e−) and holes (h+). At the same time, the F element of hectorite is beneficial to the formation of Ti3+ in TiO2, thus enhancing the photocatalytic activity. After five cycles, the removal rate of MB with TH-2 still reached 87.9%, indicating its excellent reusability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.