Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR-II fluorescence imaging holds great promise for brain-tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR-II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR-II fluorescent molecule with aggregation-induced-emission (AIE) characteristics is reported for orthotopic brain-tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g cm at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c-RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR-I photoacoustic imaging with intrinsically deeper penetration than NIR-II fluorescence imaging and, more importantly, precise tumor-depth detection through intact scalp and skull. This research demonstrates the promise of NIR-II AIE molecules and their dots in dual NIR-II fluorescence and NIR-I photoacoustic imaging for precise brain cancer diagnostics.
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading rapidly around the world, resulting in a massive death toll. Lung infection or pneumonia is the common complication of COVID-19, and imaging techniques, especially computed tomography (CT), have played an important role in diagnoses and treatment assessment of the disease. Herein, we review the use of imaging characteristics and computing models that have been applied for the management of COVID-19. CT, positron emission tomography -CT (PET/CT), lung ultrasound, and magnetic resonance imaging (MRI) have been used for detection, treatment, and follow-up. The quantitative analysis of imaging data using artificial intelligence (AI) is also explored. Our findings indicate that typical imaging characteristics and their changes can play an important role in the detection and management of COVID-19. In addition, AI or other quantitative image analysis methods are urgently needed to maximize the value of imaging in the management of COVID-19.
Advances in phototheranostics revolutionized glioma intraoperative fluorescence imaging and phototherapy. However, the lack of desired active targeting agents for crossing the blood–brain barrier (BBB) significantly compromises the theranostic efficacy. In this study, biomimetic proteolipid nanoparticles (NPs) with U.S. Food and Drug Administration (FDA)-approved indocyanine green (ICG) were constructed to allow fluorescence imaging, tumor margin detection, and phototherapy of orthotopic glioma in mice. By embedding glioma cell membrane proteins into NPs, the obtained biomimetic ICG-loaded liposome (BLIPO-ICG) NPs could cross BBB and actively reach glioma at the early stage thanks to their specific binding to glioma cells due to their excellent homotypic targeting and immune escaping characteristics. High accumulation in the brain tumor with a signal to background ratio of 8.4 was obtained at 12 h post-injection. At this time point, the glioma and its margin were clearly visualized by near-infrared fluorescence imaging. Under the imaging guidance, the glioma tissue could be completely removed as a proof of concept. In addition, after NIR laser irradiation (1 W/cm2, 5 min), the photothermal effect exerted by BLIPO-ICG NPs efficiently suppressed glioma cell proliferation with a 94.2% tumor growth inhibition. No photothermal damages of normal brain tissue and treatment-induced side effects were observed. These results suggest that the biomimetic proteolipid NP is a promising phototheranostic nanoplatform for brain-tumor-specific imaging and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.