Medical imaging can assess the tumor and its environment in their entirety, which makes it suitable for monitoring the temporal and spatial characteristics of the tumor. Progress in computational methods, especially in artificial intelligence for medical image process and analysis, has converted these images into quantitative and minable data associated with clinical events in oncology management. This concept was first described as radiomics in 2012. Since then, computer scientists, radiologists, and oncologists have gravitated towards this new tool and exploited advanced methodologies to mine the information behind medical images. On the basis of a great quantity of radiographic images and novel computational technologies, researchers developed and validated radiomic models that may improve the accuracy of diagnoses and therapy response assessments. Here, we review the recent methodological developments in radiomics, including data acquisition, tumor segmentation, feature extraction, and modelling, as well as the rapidly developing deep learning technology. Moreover, we outline the main applications of radiomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalized medicine. Finally, we discuss the challenges in the field of radiomics and the scope and clinical applicability of these methods.
Purpose: To identify MRI-based radiomics as prognostic factors in patients with advanced nasopharyngeal carcinoma (NPC).Experimental Design: One-hundred and eighteen patients (training cohort: n ¼ 88; validation cohort: n ¼ 30) with advanced NPC were enrolled. A total of 970 radiomics features were extracted from T2-weighted (T2-w) and contrast-enhanced T1-weighted (CET1-w) MRI. Least absolute shrinkage and selection operator (LASSO) regression was applied to select features for progression-free survival (PFS) nomograms. Nomogram discrimination and calibration were evaluated. Associations between radiomics features and clinical data were investigated using heatmaps.Results: The radiomics signatures were significantly associated with PFS. A radiomics signature derived from joint CET1-w and T2-w images showed better prognostic performance than signatures derived from CET1-w or T2-w images alone. One radiomics nomogram combined a radiomics signature from joint CET1-w and T2-w images with the TNM staging system. This nomogram showed a significant improvement over the TNM staging system in terms of evaluating PFS in the training cohort (C-index, 0.761 vs. 0.514; P < 2.68 Â 10 À9 ). Another radiomics nomogram integrated the radiomics signature with all clinical data, and thereby outperformed a nomogram based on clinical data alone (C-index, 0.776 vs. 0.649; P < 1.60 Â 10 À7 ). Calibration curves showed good agreement. Findings were confirmed in the validation cohort. Heatmaps revealed associations between radiomics features and tumor stages. Conclusions: Multiparametric MRI-based radiomics nomograms provided improved prognostic ability in advanced NPC. These results provide an illustrative example of precision medicine and may affect treatment strategies.
Epidermal growth factor receptor (EGFR) genotyping is critical for treatment guidelines such as the use of tyrosine kinase inhibitors in lung adenocarcinoma. Conventional identification of EGFR genotype requires biopsy and sequence testing which is invasive and may suffer from the difficulty of accessing tissue samples. Here, we propose a deep learning model to predict EGFR mutation status in lung adenocarcinoma using non-invasive computed tomography (CT).We retrospectively collected data from 844 lung adenocarcinoma patients with pre-operative CT images, EGFR mutation and clinical information from two hospitals. An end-to-end deep learning model was proposed to predict the EGFR mutation status by CT scanning.By training in 14 926 CT images, the deep learning model achieved encouraging predictive performance in both the primary cohort (n=603; AUC 0.85, 95% CI 0.83–0.88) and the independent validation cohort (n=241; AUC 0.81, 95% CI 0.79–0.83), which showed significant improvement over previous studies using hand-crafted CT features or clinical characteristics (p<0.001). The deep learning score demonstrated significant differences in EGFR-mutant and EGFR-wild type tumours (p<0.001).Since CT is routinely used in lung cancer diagnosis, the deep learning model provides a non-invasive and easy-to-use method for EGFR mutation status prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.