Purpose To develop a radiomics signature to estimate disease-free survival (DFS) in patients with early-stage (stage I-II) non-small cell lung cancer (NSCLC) and assess its incremental value to the traditional staging system and clinical-pathologic risk factors for individual DFS estimation. Materials and Methods Ethical approval by the institutional review board was obtained for this retrospective analysis, and the need to obtain informed consent was waived. This study consisted of 282 consecutive patients with stage IA-IIB NSCLC. A radiomics signature was generated by using the least absolute shrinkage and selection operator, or LASSO, Cox regression model. Association between the radiomics signature and DFS was explored. Further validation of the radiomics signature as an independent biomarker was performed by using multivariate Cox regression. A radiomics nomogram with the radiomics signature incorporated was constructed to demonstrate the incremental value of the radiomics signature to the traditional staging system and other clinical-pathologic risk factors for individualized DFS estimation, which was then assessed with respect to calibration, discrimination, reclassification, and clinical usefulness. Results The radiomics signature was significantly associated with DFS, independent of clinical-pathologic risk factors. Incorporating the radiomics signature into the radiomics-based nomogram resulted in better performance (P < .0001) for the estimation of DFS (C-index: 0.72; 95% confidence interval [CI]: 0.71, 0.73) than with the clinical-pathologic nomogram (C-index: 0.691; 95% CI: 0.68, 0.70), as well as a better calibration and improved accuracy of the classification of survival outcomes (net reclassification improvement: 0.182; 95% CI: 0.02, 0.31; P = .02). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics nomogram outperformed the traditional staging system and the clinical-pathologic nomogram. Conclusion The radiomics signature is an independent biomarker for the estimation of DFS in patients with early-stage NSCLC. Combination of the radiomics signature, traditional staging system, and other clinical-pathologic risk factors performed better for individualized DFS estimation in patients with early-stage NSCLC, which might enable a step forward precise medicine. RSNA, 2016 Online supplemental material is available for this article.
Purpose: To identify MRI-based radiomics as prognostic factors in patients with advanced nasopharyngeal carcinoma (NPC).Experimental Design: One-hundred and eighteen patients (training cohort: n ¼ 88; validation cohort: n ¼ 30) with advanced NPC were enrolled. A total of 970 radiomics features were extracted from T2-weighted (T2-w) and contrast-enhanced T1-weighted (CET1-w) MRI. Least absolute shrinkage and selection operator (LASSO) regression was applied to select features for progression-free survival (PFS) nomograms. Nomogram discrimination and calibration were evaluated. Associations between radiomics features and clinical data were investigated using heatmaps.Results: The radiomics signatures were significantly associated with PFS. A radiomics signature derived from joint CET1-w and T2-w images showed better prognostic performance than signatures derived from CET1-w or T2-w images alone. One radiomics nomogram combined a radiomics signature from joint CET1-w and T2-w images with the TNM staging system. This nomogram showed a significant improvement over the TNM staging system in terms of evaluating PFS in the training cohort (C-index, 0.761 vs. 0.514; P < 2.68 Â 10 À9 ). Another radiomics nomogram integrated the radiomics signature with all clinical data, and thereby outperformed a nomogram based on clinical data alone (C-index, 0.776 vs. 0.649; P < 1.60 Â 10 À7 ). Calibration curves showed good agreement. Findings were confirmed in the validation cohort. Heatmaps revealed associations between radiomics features and tumor stages. Conclusions: Multiparametric MRI-based radiomics nomograms provided improved prognostic ability in advanced NPC. These results provide an illustrative example of precision medicine and may affect treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.