Proteins displayed on the cell surface of lactic acid bacteria (LAB) perform diverse and important biochemical roles. Among these, the cell‐envelope proteinases (CEPs) are one of the most widely studied and most exploited for biotechnological applications. CEPs are important players in the proteolytic system of LAB, because they are required by LAB to degrade proteins in the growth media into peptides and/or amino acids required for the nitrogen nutrition of LAB. The most important area of application of CEPs is therefore in protein hydrolysis, especially in dairy products. Also, the physical location of CEPs (i.e., being cell‐envelope anchored) allows for relatively easy downstream processing (e.g., extraction) of CEPs. This review describes the biochemical features and organization of CEPs and how this fits them for the purpose of protein hydrolysis. It begins with a focus on the genetic organization and expression of CEPs. The catalytic behavior and cleavage specificities of CEPs from various LAB are also discussed. Following this, the extraction and purification of most CEPs reported to date is described. The industrial applications of CEPs in food technology, health promotion, as well as in the growing area of water purification are discussed. Techniques for improving the production and catalytic efficiency of CEPs are also given an important place in this review.
The drug-likeness and pharmacokinetic properties of 23 dairy-protein-derived opioid peptides were studied using SwissADME and ADMETlab in silico tools. All the opioid peptides had poor drug-like properties based on violations of Lipinski’s rule-of-five. Moreover, prediction of their pharmacokinetic properties showed that the peptides had poor intestinal absorption and bioavailability. Following this, two well-known opioid peptides (βb-casomorphin-5, βb-casomorphin-7) from A1 bovine milk and caffeine (positive control) were selected for in silico molecular docking and in vitro inhibition study with two cholinesterase enzyme receptors important for the pathogenesis of Alzheimer’s disease. Both peptides showed higher binding free energies and inhibitory activities to butyrylcholinesterase (BChE) than caffeine, but in vitro binding energy values were lower than those from the docking model. Moreover, the two casomorphins had lower inhibitory properties against acetylcholinesterase (AChE) than caffeine, although the docking model predicted the opposite. At 1 mg/mL concentrations, βb-casomorphin-5 and βb-casomorphin-7 showed promising results in inhibiting both cholinesterases (i.e., respectively 34% and 43% inhibition of AChE, and 67% and 81% inhibition of BChE). These dairy-derived opioid peptides have the potential to treat Alzheimer’s disease via cholinesterase inhibition. However, appropriate derivatization may be required to improve their poor predicted intestinal absorption and bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.