Nitrogen (N) is a key element for the production of potato. The N uptake efficiency, N use efficiency and increased N utilization efficiency can be decreased by N deficiency treatment. We performed this study to investigate the association between transcriptomic profiles and the efficiencies of N in potato. Potato cultivars “Yanshu 4” (short for Y), “Xiabodi” (cv. Shepody, short for X) and “Chunshu 4” (short for C) were treated with sufficient N fertilizer and deficient N fertilizer. Then, the growth parameters and tuber yield were recorded; the contents of soluble sugar and protein were measured; and the activities of enzymes were detected. Leaf and root transcriptomes were analyzed and differentially expressed genes (DEGs) in response to N deficiency were identified. The results showed that N deficiency decreased the nitrate reductase (NR), glutamine synthetase (GS) and root activity. Most of the DEGs between N-treated and N-deficiency participate the processes of transport, nitrate transport, nitrogen compound transport and N metabolism in C and Y, not in X, indicating the cultivar-dependent response to N deficiency. DEGs like glutamate dehydrogenase ( StGDH) , glutamine synthetase ( StGS) and carbonic anhydrase ( StCA) play key roles in these processes mentioned above. DEGs related to N metabolism showed a close relationship with the N utilization efficiency (UTE), but not with N use efficiency (NUE). The Major Facilitator Superfamily (MFS) members, like nitrate transporter 2.4 ( StNRT2 . 4) , 2.5 ( StNRT2 . 5) and 2.7 ( StNRT2 . 7) , were mainly enriched in the processes associated with response to stresses and defense, indicating that N deficiency induced stresses in all cultivars.
Background ‘Regal Splendour’ (Hosta variety) is famous for its multi-color leaves, which are useful resources for exploring chloroplast development and color changes. The expressions of chlorophyll biosynthesis-related genes (HrHEMA, HrPOR and HrCAO) in Hosta have been demonstrated to be associated with leaf color. Herein, we isolated, sequenced, and analyzed HrHEMA, HrPOR and HrCAO genes. Subcellular localization was also performed to determine the location of the corresponding enzymes. After plasmid construction, virus-induced gene silencing (VIGS) was carried out to reduce the expressions of those genes. In addition, HrHEMA-, HrPOR- and HrCAO-overexpressing tobacco plants were made to verify the genes function. Changes of transgenic tobacco were recorded under 2000 lx, 6000 lx and 10,000 lx light intensity. Additionally, the contents of enzyme 5-aminolevulinic acid (5-ALA), porphobilinogen (PBG), chlorophyll a and b (Chla and Chlb), carotenoid (Cxc), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), proline (Pro) and catalase (CAT) under different light intensities were evaluated. Results The silencing of HrHEMA, HrPOR and HrCAO genes can induce leaf yellowing and chloroplast structure changes in Hosta. Specifically, leaves of Hosta with HrCAO silencing were the most affected, while those with HrPOR silencing were the least affected. Moreover, all three genes in tobacco were highly expressed, whereas no expression was detected in wild-type (WT). However, the sensitivities of the three genes to different light intensities were different. The highest expression level of HrHEMA and HrPOR was detected under 10,000 lx of illumination, while HrCAO showed the highest expression level under 6000 lx. Lastly, the 5-ALA, Chla, Cxc, SOD, POD, MDA, Pro and CAT contents in different transgenic tobaccos changed significantly under different light intensities. Conclusion The overexpression of these three genes in tobacco enhanced photosynthesis by accumulating chlorophyll content, but the influential level varied under different light intensities. Furthermore, HrHEMA-, HrPOR- and HrCAO- overexpressing in tobacco can enhance the antioxidant capacity of plants to cope with stress under higher light intensity. However, under lower light intensity, the antioxidant capacity was declined in HrHEMA-, HrPOR- and HrCAO- overexpressing tobaccos.
Background: Hosta plantaginea (Lam.) Aschers (HPA), a species in the family Liliaceae, is an important landscaping plant and herbaceous ornamental flower. However, because the flower has only two colors, white and purple, color matching applications are extremely limited. To date, the mechanism underlying flower color regulation remains unclear. Methods: In this study, the transcriptomes of three cultivars—H. plantaginea (HP, white flower), H. Cathayana (HC, purple flower), and H. plantaginea ‘Summer Fragrance’ (HS, purple flower)—at three flowering stages (bud stage, initial stage, and late flowering stage) were sequenced with the Illumina HiSeq 2000 (San Diego, CA, USA). The RNA-Seq results were validated by qRT-PCR of eight differentially expressed genes (DEGs). Then, we further analyzed the relationship between anthocyanidin synthase (ANS), chalcone synthase (CHS), and P450 and the flower color regulation by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Eukaryotic Orthologous Groups (KOG) network and pathway enrichment analyses. The overexpression of CHS and ANS in transgenic tobacco petals was verified using qRT-PCR, and the petal colors associated with the overexpression lines were confirmed using absorbance values. Results: Over 434,349 transcripts were isolated, and 302,832 unigenes were identified. Additionally, through transcriptome comparisons, 2098, 722, and 606 DEGs between the different stages were found for HP, HC, and HS, respectively. Furthermore, GO and KEGG pathway analyses showed that 84 color-related DEGs were enriched in 22 pathways. In particular, the flavonoid biosynthetic pathway, regulated by CHS, ANS, and the cytochrome P450-type monooxygenase gene, was upregulated in both purple flower varieties in the late flowering stage. In contrast, this gene was hardly expressed in the white flower variety, which was verified in the CHS and ANS overexpression transgenic tobacco petals. Conclusions: The results suggest that CHS, ANS, and the cytochrome P450s-regulated flavonoid biosynthetic pathway might play key roles in the regulation of flower color in HPA. These insights into the mechanism of flower color regulation could be used to guide artificial breeding of polychrome varieties of ornamental flowers.
Nitrogen (N2) is the most important source of mineral N for plant growth, which was mainly transported by nitrate transporters (NRTs). However, little is known about the NRT gene family in potato. In this study, StNRT gene family members were identified in potato. In addition, we performed StNRT subfamily classification, gene structure and distribution analysis, and conserved domain prediction using various bioinformatics tools. Totally, 39 StNRT gene members were identified in potato genome, including 33, 4 and 2 member belong to NRT1, NRT2, and NRT3, respectively. These 39 StNRT genes were randomly distributed on all chromosomes. The collinearity results show that StNRT members in potato are closely related to Solanum lycopersicum and Solanum melongena. For the expression, different members of StNRT play different roles in leaves and roots. Especially under sufficient nitrogen conditions, different members have a clear distribution in different tissues. These results provide valuable information for identifying the members of the StNRT family in potato and could provide functional characterization of StNRT genes in further research.
Potato ( Solanum tuberosum L.), a species of the family Solanaceae, is the fourth most important food crop worldwide. Solanum tuberosum L. cv. Favorita is a long oval, smooth, yellowish-skinned potato variety with green and plump leaves. It has a dry matter content of 17.7% and starch content of 12.4–14.01% in the tuber. In order to support more genetic data for the taxonomy of S. tuberosum , the complete chloroplast (cp) genome sequence of S. tuberosum L. cv. Favorita was determined using next-generation sequencing. In leaves, the chloroplast genome accounts for 5.17% of the total genome. The entire cp genome was determined to be 155,296 bp in length. It contained large single-copy (LSC) and small single-copy (SSC) regions of 85,737 and 18,373 bp, respectively, which were separated by a pair of 25,593 bp inverted repeat (IR) regions. The genome contained 132 total genes, including 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The overall GC content of the genome is 37.9%. A phylogenetic tree reconstructed by 60 chloroplast genomes reveals that S. tuberosum L. cv. Favorita is most closely related to S. tuberosum L. cv. Desiree and S. tuberosum L. cv. Atlantic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.