Hepatocellular carcinoma (HCC) is one of the most fatal cancers worldwide. Here, we show that expression of abnormal spindle-like microcephaly-associated (ASPM) is upregulated in liver cancer samples and this upregulation is significantly associated with tumor aggressiveness and reduced survival times of patients. Downregulation of ASPM expression inhibits the proliferation, invasion, migration and epithelial-to-mesenchymal transition of HCC cells in vitro, and inhibits tumor formation in nude mice. ASPM interacts with disheveled-2 (Dvl2) and antagonizes autophagy-mediated Dvl2 degradation by weakening the functional interaction between Dvl2 and the lipidated form of microtubule-associated proteins 1A/1B light chain 3A (LC3II), thereby increasing Dvl2 protein abundance and leading to Wnt/β-catenin signaling activation in HCC cells. Thus, our results define ASPM as a novel oncoprotein in HCC and indicate that disruption of the Wnt-ASPM-Dvl2-β-catenin signaling axis might have potential clinical value.
Objective Knowledge of the role of CYP2E1 in hepatocarcinogenesis is largely based on epidemiological and animal studies, with a primary focus on the role of CYP2E1 in metabolic activation of procarcinogens. Few studies have directly assessed the effects of CYP2E1 on HCC malignant phenotypes. Methods The expression of CYP2E1 in HCC tissues was determined by qRT-PCR, western blotting and immunohistochemistry. Overexpression of CYP2E1 in HCC cell was achieved by lentivirus transfection. The function of CYP2E1 were detected by CCK-8, wound healing, transwell assays, xenograft models and pulmonary metastasis model. TOP/FOPFlash reporter assay, western blotting, functional rescue experiments, Co-immunoprecipitation and reactive oxygen species detection were conducted to reveal the underlying mechanism of the tumor suppressive role of CYP2E1. Results CYP2E1 expression is down-regulated in HCC tissues, and this downregulation was associated with large tumor diameter, vascular invasion, poor differentiation, and shortened patient survival time. Ectopic expression of CYP2E1 inhibits the proliferation, invasion and migration and epithelial-to-mesenchymal transition of HCC cells in vitro, and inhibits tumor formation and lung metastasis in nude mice. Mechanistic investigations show that CYP2E1 overexpression significantly inhibited Wnt/β-catenin signaling activity and decreased Dvl2 expression in HCC cells. An increase in Dvl2 expression restored the malignant phenotype of HCC cells. Notably, CYP2E1 promoted the ubiquitin-mediated degradation of Dvl2 by strengthening the interaction between Dvl2 and the E3 ubiquitin ligase KLHL12 in CYP2E1-stable HCC cells. CYP2E1-induced ROS accumulation was a critical upstream event in the Wnt/β-Catenin pathway in CYP2E1-overexpressing HCC cells. Conclusions These results provide novel insight into the role of CYP2E1 in HCC and the tumor suppressor role of CYP2E1 can be attributed to its ability to manipulate Wnt/Dvl2/β-catenin pathway via inducing ROS accumulation, which provides a potential target for the prevention and treatment of HCC. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.