During social interaction, humans recognize others’ emotions via individual features and interpersonal features. However, most previous automatic emotion recognition techniques only used individual features—they have not tested the importance of interpersonal features. In the present study, we asked whether interpersonal features, especially time-lagged synchronization features, are beneficial to the performance of automatic emotion recognition techniques. We explored this question in the main experiment (speaker-dependent emotion recognition) and supplementary experiment (speaker-independent emotion recognition) by building an individual framework and interpersonal framework in visual, audio, and cross-modality, respectively. Our main experiment results showed that the interpersonal framework outperformed the individual framework in every modality. Our supplementary experiment showed—even for unknown communication pairs—that the interpersonal framework led to a better performance. Therefore, we concluded that interpersonal features are useful to boost the performance of automatic emotion recognition tasks. We hope to raise attention to interpersonal features in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.