B-mode ultrasonography and sonoelastography are used in the clinical diagnosis of prostate cancer (PCa). A combination of the two ultrasound (US) modalities using computer aid may be helpful for improving the diagnostic performance. A technique for computer-aided diagnosis (CAD) of PCa is presented based on multimodal US. Firstly, quantitative features are extracted from both B-mode US images and sonoelastograms, including intensity statistics, regional percentile features, gray-level co-occurrence matrix (GLCM) texture features and binary texture features. Secondly, a deep network named PGBM-RBM2 is proposed to learn and fuse multimodal features, which is composed of the point-wise gated Boltzmann machine (PGBM) and two layers of the restricted Boltzmann machines (RBMs). Finally, the support vector machine (SVM) is used for prostatic disease classification. Experimental evaluation was conducted on 313 multimodal US images of the prostate from 103 patients with prostatic diseases (47 malignant and 56 benign). Under five-fold cross-validation, the classification sensitivity, specificity, accuracy, Youden’s index and area under the receiver operating characteristic (ROC) curve with the PGBM-RBM2 were 87.0%, 88.8%, 87.9%, 75.8% and 0.851, respectively. The results demonstrate that multimodal feature learning and fusion using the PGBM-RBM2 can assist in the diagnosis of PCa. This deep network is expected to be useful in the clinical diagnosis of PCa.
Objective Automated segmentation of lymph nodes (LNs) in ultrasound images is a challenging task mainly due to the presence of speckle noise and echogenic hila. In this paper, we propose a fully automatic and accurate method for LN segmentation in ultrasound.
MethodsThe proposed segmentation method integrates diffusion-based despeckling, U-Net convolutional neural networks and morphological operations. Firstly, we suppress speckle noise and enhance lymph node edges using the Gabor-based anisotropic diffusion (GAD). Secondly, a modified U-Net model is proposed to segment LNs excluding echogenic hila. Finally, morphological operations are adopted to segment entire LNs by filling the regions of echogenic hila.Results A total of 531 lymph nodes from 526 patients were included to evaluate the proposed method. Quantitative metrics of segmentation performance, including the accuracy, sensitivity, specificity, Jaccard similarity and Dice coefficient, reached 0.934, 0.939, 0.937, 0.763 and 0.865, respectively.
ConclusionThe proposed method automatically and accurately segments LNs in ultrasound, which may assist artificially intelligent diagnosis of lymph node diseases.
This study aimed to propose a deep transfer learning framework for histopathological image analysis by using convolutional neural networks (CNNs) with visualization schemes, and to evaluate its usage for automated and interpretable diagnosis of cervical cancer. First, in order to examine
the potential of the transfer learning for classifying cervix histopathological images, we pre-trained three state-of-the-art CNN architectures on large-size natural image datasets and then fine-tuned them on small-size histopathological datasets. Second, we investigated the impact of three
learning strategies on classification accuracy. Third, we visualized both the multiple-layer convolutional kernels of CNNs and the regions of interest so as to increase the clinical interpretability of the networks. Our method was evaluated on a database of 4993 cervical histological images
(2503 benign and 2490 malignant). The experimental results demonstrated that our method achieved 95.88% sensitivity, 98.93% specificity, 97.42% accuracy, 94.81% Youden's index and 99.71% area under the receiver operating characteristic curve. Our method can reduce the cognitive burden on pathologists
for cervical disease classification and improve their diagnostic efficiency and accuracy. It may be potentially used in clinical routine for histopathological diagnosis of cervical cancer.
The elevated hardness of PG identified high-risk PCA and served as an independent marker of high-risk PCA. As a non-invasive imaging modality, the RTE could be potentially used in routine clinical practice for the detection of high-risk PCA to decrease unnecessary biopsies and reduce overtreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.