Calorie restriction (CR) extends lifespan and elicits numerous effects beneficial to health and metabolism in various model organisms, but the underlying mechanisms are not completely understood. Gut microbiota has been reported to be associated with the beneficial effects of CR; however, it is unknown whether these effects of CR are causally mediated by gut microbiota. In this study, we employed an antibiotic-induced microbiota-depleted mouse model to investigate the functional role of gut microbiota in CR. Depletion of gut microbiota rendered mice resistant to CR-induced loss of body weight, accompanied by the increase in fat mass, the reduction in lean mass and the decline in metabolic rate. Depletion of gut microbiota led to increases in fasting blood glucose and cholesterol levels independent of CR. A few metabolism-modulating hormones including leptin and insulin were altered by CR and/or gut microbiota depletion. In addition, CR altered the composition of gut microbiota with significant increases in major probiotic genera such as Lactobacillus and Bifidobacterium, together with the decrease of Helicobacter. In addition, we performed fecal microbiota transplantation in mice fed with high-fat diet. Mice with transferred microbiota from calorie-restricted mice resisted high fat diet-induced obesity and exhibited metabolic improvement such as alleviated hepatic lipid accumulation. Collectively, these data indicate that CR-induced metabolic improvement especially in body weight reduction is mediated by intestinal microbiota to a certain extent.
Cartilage dyshomeostasis contributes to osteoarthritis (OA) pathogenesis, and tumor necrosis factor (TNF)-α has critical role in this process by driving inflammatory cascades and cartilage degradation. However, the negative regulation of TNF-α-mediated signaling remains undefined. Here we demonstrate the crucial role of miR-145 in the modulation of TNF-α-mediated signaling and cartilage matrix degradation. MicroRNA (miRNA) expression profiles of TNF-α-stimulated chondrocytes showed that miR-145 expression was rapidly downregulated by TNF-α. Moreover, miR-145 was directly repressed by p65 and was negatively correlated with TNF-α secretion during OA progression. Further, we found that miR-145 directly targeted mitogen-activated protein kinase kinase 4 (MKK4) and broadly restrained the production of several TNF-α-triggered matrix-degrading enzymes (MMP-3, MMP-13, and Adamts-5). Mechanistic studies unveiled that miR-145 negatively regulated TNF-α-mediated JNK and p38 activation, as well as the nuclear accumulation of p-c-Jun and p-ATF2, by inhibiting MKK4 phosphorylation, eventually resulting in the alteration of catabolic genes transcription. Indeed, p-ATF2 interacted with the promoter of Mmp-13, whereas p-c-Jun bound to promoters of Mmp-3 and Adamts-5. MKK4 was significantly elevated in OA cartilage. Eliminating MKK4 by short hairpin RNA resulted in obviously decreased matrix-degrading enzymes production, JNK and p38 inactivation, and an inhibition of cartilage degradation. On the contrary, MKK4 overexpression enhanced TNF-α-mediated signaling activation and transcription of downstream catabolic genes, and consequently worsened cartilage degradation. Moreover, intra-articular (IA) injection of miR-145 agonist to rat with surgery-induced OA alleviated cartilage destruction. Altogether, we elucidate a novel regulatory mechanism underlying TNF-α-triggered cartilage degradation and demonstrate the potential utility of miR-145 and MKK4 as therapy targets for OA.
Fasting and especially intermittent fasting have been shown to be an effective intervention in many diseases, such as obesity and diabetes. The fasting-mimicking diet (FMD) has recently been found to ameliorate metabolic disorders. To investigate the effect of a new type of low-protein low-carbohydrate FMD on diabetes, we tested an FMD in db/db mice, a genetic model of type 2 diabetes. The diet was administered every other week for a total of 8 weeks. The intermittent FMD normalized blood glucose levels in db/db mice, with significant improvements in insulin sensitivity and β cell function. The FMD also reduced hepatic steatosis in the mice. Deterioration of pancreatic islets and the loss of β cells in the diabetic mice were prevented by the FMD. The expression of β cell progenitor marker Ngn3 was increased by the FMD. In addition, the FMD led to the reconstruction of gut microbiota. Intermittent application of the FMD increased the genera of Parabacteroides and Blautia while reducing Prevotellaceae, Alistipes and Ruminococcaceae. The changes in these bacteria were also correlated with the fasting blood glucose levels of the mice. Furthermore, intermittent FMD was able to reduce fasting blood glucose level and increase β cells in STZ-induced type 1 diabetic mouse model. In conclusion, our study provides evidence that the intermittent application of an FMD is able to effectively intervene in the progression of diabetes in mice.Electronic supplementary materialThe online version of this article (10.1186/s12986-018-0318-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.