C. elegans neurons were thought to be non-spiking until our recent discovery of action potentials in the sensory neuron AWA; however, the extent to which the C. elegans nervous system relies on analog or digital coding is unclear. Here we show that the enteric motor neurons AVL and DVB fire synchronous all-or-none calcium-mediated action potentials following the intestinal pacemaker during the rhythmic C. elegans defecation behavior. AVL fires unusual compound action potentials with each depolarizing calcium spike mediated by UNC-2 followed by a hyperpolarizing potassium spike mediated by a repolarization-activated potassium channel EXP-2. Simultaneous behavior tracking and imaging in free-moving animals suggest that action potentials initiated in AVL propagate along its axon to activate precisely timed DVB action potentials through the INX-1 gap junction. This work identifies a novel circuit of spiking neurons in C. elegans that uses digital coding for long-distance communication and temporal synchronization underlying reliable behavioral rhythm.
Caenorhabditis elegans (C. elegans) is an ideal model organism for studying neuronal functions at the system level. This article develops a customized system for wholebody motor neuron calcium imaging of freely moving C. elegans without the coverslip pressed. Firstly, we proposed a fast centerline localization algorithm that could deal with most topology-variant cases costing only 6 ms for one frame, not only benefits for real-time localization but also for post-analysis. Secondly, we implemented a fulltime two-axis synchronized motion strategy by adaptively adjusting the motion parameters of two motors in every short-term motion step (~50 ms). Following the above motion tracking configuration, the tracking performance of our system has been demonstrated to completely support the high spatiotemporal resolution calcium imaging on whole-body motor neurons of wild-type (N2) worms as well as two mutants (unc-2, unc-9), even the instantaneous speed of worm moving without coverslip pressed was extremely up to 400 μm/s.
The C. elegans nervous system was thought to be strictly analog, constituted solely by graded neurons. We recently discovered neuronal action potentials in the sensory neuron AWA; however, the extent to which the C. elegans nervous system relies on analog or digital neural signaling and coding is unclear. Here we report that the enteric motor neurons AVL and DVB fire all-or-none calcium-mediated action potentials that play essential roles in the rhythmic defecation behavior in C. elegans. Both AVL and DVB synchronously fire giant action potentials to faithfully execute all-or-none expulsion following the intestinal pacemaker. AVL fires unusual compound action potentials with each positive calcium-mediated spike followed by a potassium-mediated negative spike. The depolarizing calcium spikes in AVL are mediated by a CaV2 calcium channel UNC-2, while the negative potassium spikes are mediated by a repolarization-activated potassium channel EXP-2. Whole-body behavior tracking and simultaneous neural imaging in free-moving animals suggest that action potentials initiated in AVL in the head propagate along its axon to the tail and activate DVB through the INX-1 gap junction. Synchronized action potential spikes between AVL and DVB, as well as the negative spike and long-lasting afterhyperpolarization in AVL, play an important function in executing expulsion behavior. This work provides the first evidence that in addition to sensory coding, C. elegans motor neurons also use digital coding scheme to perform specific functions including long-distance communication and temporal synchronization, suggesting further, unforeseen electrophysiological diversity remains to be discovered in the C. elegans nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.