Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Microneedles are one promising penetration enhancement vehicle to overcome the stratum corneum skin barrier, which hampers the penetration of drug nanocrystals by transdermal delivery. In order to clarify the particle size effect of nanocrystals on transdermal delivery, 60 nm, 120 nm, and 480 nm curcumin nanocrystals were fabricated and incorporated into dissolving hyaluronic acid polysaccharide microneedles. The microneedles showed good mechanical strength with 1.4 N/needle, possessing the ability to insert into the skin. The passive permeation results showed that the smaller particle size of 60 nm curcumin nanocrystals diffused faster and deeper than the larger 120 nm and 480 nm curcumin nanocrystals with size-dependent diffusion behaviors. Thereafter, higher concentration gradients and overlap diffusional coronas also formed in the skin layers by the smaller-particle-size nanocrystals. Furthermore, the diffusion rate of the smaller particle size of curcumin nanocrystals to the hair follicle was also higher than that of the larger curcumin nanocrystals. In conclusion, the particle sizes of curcumin nanocrystals influenced the transdermal and transfollicular penetration in deeper skin layers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.