Trimetazidine is a piperazine-derived metabolic agent, which exerts cell protective effects and has been reported to be efficient in the treatment of chronic stable angina pectoris. In addition, it has been shown to exert protection against acute myocardial infarction. The present study aimed to investigate whether trimetazidine protects against cardiac ischemia/reperfusion (I/R) injury, and to determine whether its curative effects are associated with microRNA (miRNA)-21 expression, Akt, and the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) pathway. Cardiac I/R injury was induced by ligating the left anterior descending coronary artery in adult rats. Subsequently, cardiac function was evaluated, and the expression levels of miRNA-21, Bcl-2, Bax and phosphorylated-Akt were detected using quantitative polymerase chain reaction and western blotting. The results indicated that trimetazidine was able to significantly protect cardiac function and reduce infarct size in rats following cardiac I/R injury. Furthermore, trimetazidine significantly promoted miRNA-21 expression and phosphorylated-Akt protein expression, and reduced the Bcl-2/Bax ratio in rats following cardiac I/R injury. Knockdown of miRNA-21 using anti-miR-21 plasmids was able to reverse the protective effects of trimetazidine against cardiac I/R injury. These results indicated that miRNA-21 serves a protective role in cardiac I/R injury via Akt and the Bcl-2/Bax pathway. In addition, trimetazidine exerts protective effects against cardiac I/R injury through cardiac miRNA-21 expression, Akt, and the Bcl-2/Bax pathway. Therefore, the present study provided evidence regarding the protective effects of miRNA-21 on cardiac I/R injury following treatment with trimetazidine in vivo.
Background/Aims: Deregulation of microRNAs (miRNAs) expression is a frequent event in cancer development and progression. Recent studies have implied that abnormal expression of miRNAs is frequently observed in non-small cell lung cancer (NSCLC). Here, we examined the levels and biological functions of miR-509-5p in NSCLC. Methods: The levels of miR-509-5p were measured by real-time quantitative PCR (RT-PCR) in NSCLC cell lines and NSCLC tissues along with adjacent normal tissues. Cell viability was analyzed by MTT and colony formation assay. Cell migration and invasion were evaluated by transwell and wound healing assay. In addition, we predicted the putative targets of miR-509-5p by bioinformatics analyses. Moreover, by luciferase-reporter assay, we analyzed the relationship between miR-509-5p and the target in NSCLC cells. Results: miR-509-5p expression was significantly reduced in NSCLC tissues compared with adjacent normal tissues. In addition, miR-509-5p decreased cell proliferation, migration and invasive capability of NSCLC cells. Moreover, we found that FOXM1 was a putative target of miR-509-5p. Enforced miR-509-5p expression in NSCLC cells reduced both mRNA and protein levels of FOXM1. Furthermore, dual-luciferase reporter assay showed miR-509-5p could bind to the 3' untranslational regions of FOXM1 mRNA. Furthermore, overexpression of FOXM1 reversed cell viability, migration, invasion and vimentin levels suppressed by miR-509-5p mimics in H1299 cells. Conclusions: miR-509-5p exerts tumor-suppressive effects by attenuating FOXM1 in NSCLC. Collectively, these findings provide further evidence that miR-509-5p may be considered as a novel and potential target for the diagnosis, prognosis and treatment of NSCLC.
Adipose-derived stem cells demonstrate promising effects in promoting cutaneous wound healing, but the mechanisms are still not well defined and contradictory views are still debatable. In the present research, we established a mouse cutaneous wound model and investigated the effects of adipose-derived stem cells in wound healing. Adipocyte, adipose-derived stem cells, and epidermal keratinocyte stem cells were isolated from younger and aged donors according to the standard protocol. The conditioned medium either from adipose-derived stem cells or from adipocytes was used to treat epidermal keratinocyte cells. The results showed that adipocytes or adipose-derived stem cells isolated from younger donors demonstrated mild advantage over those cells isolated from aging donors. Adipose-derived stem cells showed stronger stimuli than adipocytes, and the adiposederived stem cells or adipocytes from younger donors enabled to support higher growth rate of keratinocyte stem cells. The invasion of vasculature was observed at day 10 after posttransplantation in the mice bearing the keratinocyte stem cells or combination of keratinocyte stem cells with adipose-derived stem cells; however, simply inoculating keratinocyte stem cells from aging donors did not result in vasculature formation. Adipose-derived stem cells isolated from younger donors were able to inspire the host's self-healing capabilities, and age-associated factors should be taken into consideration when designing a feasible therapeutic treatment for skin regeneration.
In this work, the behavior of coal char particles adhering to the slag wall was studied. The effects of slag thickness and particle size on the restitution coefficient and probability of deposition were mainly discussed. In addition, the types of particle deposition were also classified. The results of exploring the effect of particle size on the coefficient of restitution show that the restitution coefficient of coal char particles hitting the slag wall surface has a complex dimensional effect, with a maximum and minimum coefficient of restitution occurring at the same particle size, a phenomenon referred to in this paper as the discrete effect. The minimum restitution coefficient greater than 0 is regarded as the critical restitution coefficient (ε f), and it is considered that particles with theoretical restitution coefficient higher than εf will bounce off the slag wall. With the particle diameter of 600 μm as the boundary, ε f first decreases and then increases. The maximum restitution coefficient increases with an increasing particle size of less than 600 μm and stays at a maximum value of 0.62 when the particle size is more than 600 μm. Moreover, the fragmentation of particles occurs at the particle size of 840–1600 μm. The discrete effect was also observed in the experimental data for the investigation of slag thickness, ε f increases with the increase of the slag thickness, and the maximum possible restitution coefficient does not change with the thickness of the slag. In addition, according to the statistics of the deposition probability, it is found that the smaller the particle size, the greater the deposition probability, the thicker the slag thickness, and the easier it is to deposit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.