Introduction: Large-scale integration of wind generation brings great challenges to the secure operation of the power systems due to the intermittence nature of wind. The fluctuation of the wind generation has a great impact on the unit commitment. Thus accurate wind power forecasting plays a key role in dealing with the challenges of power system operation under uncertainties in an economical and technical way. Methods: In this paper, a combined approach based on Extreme Learning Machine (ELM) and an error correction model is proposed to predict wind power in the short-term time scale. Firstly an ELM is utilized to forecast the short-term wind power. Then the ultra-short-term wind power forecasting is acquired based on processing the short-term forecasting error by persistence method. Results: For short-term forecasting, the Extreme Learning Machine (ELM) doesn't perform well. The overall NRMSE (Normalized Root Mean Square Error) of forecasting results for 66 days is 21.09 %. For the ultra-short term forecasting after error correction, most of forecasting errors lie in the interval of 10 MW]. The error distribution is concentrated and almost unbiased. The overall NRMSE is 5.76 %. Conclusion: The ultra-short-term wind power forecasting accuracy is further improved by using error correction in terms of normalized root mean squared error (NRMSE).
Abstract:Wind power time series data always exhibits nonlinear and non-stationary features, making it very difficult to accurately predict. In this paper, a novel hybrid wind power time series prediction model, based on ensemble empirical mode decomposition-permutation entropy (EEMD-PE), the least squares support vector machine model (LSSVM), and gravitational search algorithm (GSA), is proposed to improve accuracy of ultra-short-term wind power forecasting. To process the data, original wind power series were decomposed by EEMD-PE techniques into a number of subsequences with obvious complexity differences. Then, a new heuristic GSA algorithm was utilized to optimize the parameters of the LSSVM. The optimized model was developed for wind power forecasting and improved regression prediction accuracy. The proposed model was validated with practical wind power generation data from the Hebei province, China. A comprehensive error metric analysis was carried out to compare the performance of our method with other approaches. The results showed that the proposed model enhanced forecasting performance compared to other benchmark models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.