This paper deals with sentence-level sentiment classification. Though a variety of neural network models have been proposed recently, however, previous models either depend on expensive phrase-level annotation, most of which has remarkably degraded performance when trained with only sentence-level annotation; or do not fully employ linguistic resources (e.g., sentiment lexicons, negation words, intensity words). In this paper, we propose simple models trained with sentence-level annotation, but also attempt to model the linguistic role of sentiment lexicons, negation words, and intensity words. Results show that our models are able to capture the linguistic role of sentiment words, negation words, and intensity words in sentiment expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.