Network slicing is a key technology in fifth-generation (5G) mobile networks. Slicing divides a physical network into multiple dedicated logical networks to meet the requirements of diverse use cases. Efficient slice deployment algorithms are critical in reducing network operators' costs and energy consumption and in providing users better service. Many researchers have focused on static deployment when investigating network slices, effectively ignoring network operators' requirements for the dynamic deployment and expansion of such slices. In this paper, we first construct a joint optimization problem of cost and energy consumption. Then, we propose a prediction-assisted adaptive network slice expansion algorithm to deploy network slices dynamically. The proposed algorithm consists of three parts. First, we devise a Holt-Winters (HW) prediction algorithm to determine traffic demand for network slices. This method is intended to avoid frequent changes in network topology. Second, we propose a virtual network function (VNF) adaptive scaling strategy to reasonably determine the number of VNFs and resources required for network slices to avoid resource wastage. Finally, we develop a proactive online algorithm to deploy network slices. This method deploys network slices reasonably via the VNF deployment algorithm and link-routing algorithm to ensure slices' service requirements. Resource capacity and delay requirements are also considered in our evaluation to ensure that network costs and energy consumption are minimized. We then perform a series of simulation experiments to compare the proposed method's performance to stateof-the-art dynamic network slicing technologies. Ultimately, our solution is deemed a suitable candidate for dynamic deployment of 5G network slices; the solution demonstrates advantages of high resource utilization, low deployment costs, and low energy consumption.
The two-stage method is proposed to suppress speckle noise in the digital hologram. Three kinds of optical denoising ways are analyzed and compared at first. The optimal one is used to reduce speckle preliminarily. At the same time, the statistical property of the speckle is changed by the optical way. Then the optimized NLM algorithm is adopted to further suppress speckle noise. The experimental system is set up, and the performance indices are calculated. The results are compared with other algorithms. It is demonstrated that the presented method can effectively suppress speckle noise in the digital hologram and the processed image is very vivid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.