Reactive oxygen species (ROS) damage mammalian sperm during liquid storage. Notoginsenoside R1 (NR1) is a compound isolated from the roots of Panax notoginseng; it has powerful ROS‐scavenging activities. This work hypothesized that the antioxidant capacity of NR1 could improve boar sperm quality and fertility during liquid storage. During liquid storage at 17°C, the supplementation of semen extender with NR1 (50 μM) significantly improved sperm motility, membrane integrity and acrosome integrity after 5 days of preservation. NR1 treatment also reduced ROS and lipid peroxidation (LPO) levels at day 5 (p <0.05). Higher glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) levels and sperm–zona pellucida binding capacity were observed in the 50 μM NR1 group than those in the control group at day 7 (p <0.05). Importantly, statistical analysis of the fertility of 200 sows indicated that addition of NR1 to the extender improved the fertility parameters of boar spermatozoa during liquid storage at 17°C (p <0.05). These results demonstrate the practical feasibility of using 50 μM NR1 as an antioxidant in boar extender during liquid storage at 17°C, which is beneficial to both spermatozoa quality and fertility.
Reproductive traits have a key impact on production efficiency in the pig industry. It is necessary to identify the genetic structure of potential genes that influence reproductive traits. In this study, a genome-wide association study (GWAS) based on chip and imputed data of five reproductive traits, namely, total number born (TNB), number born alive (NBA), litter birth weight (LBW), gestation length (GL), and number of weaned (NW), was performed in Yorkshire pigs. In total, 272 of 2844 pigs with reproductive records were genotyped using KPS Porcine Breeding SNP Chips, and then chip data were imputed to sequencing data using two online software programs: the Pig Haplotype Reference Panel (PHARP v2) and Swine Imputation Server (SWIM 1.0). After quality control, we performed GWAS based on chip data and the two different imputation databases by using fixed and random model circulating probability unification (FarmCPU) models. We discovered 71 genome-wide significant SNPs and 25 potential candidate genes (e.g., SMAD4, RPS6KA2, CAMK2A, NDST1, and ADCY5). Functional enrichment analysis revealed that these genes are mainly enriched in the calcium signaling pathway, ovarian steroidogenesis, and GnRH signaling pathways. In conclusion, our results help to clarify the genetic basis of porcine reproductive traits and provide molecular markers for genomic selection in pig breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.