The type VI secretion system (T6SS) is a widespread molecular weapon deployed by many bacterial species to target eukaryotic host cells or rival bacteria. Using a dynamic injection mechanism, diverse effectors can be delivered by T6SS directly into recipient cells. Here, we report a new family of T6SS effectors encoded by extended Hcps carrying diverse toxin domains. Bioinformatic analyses revealed that these Hcps with C-terminal extension toxins, designated as Hcp-ET, exist widely in the Enterobacteriaceae. To verify our findings, Hcp-ET1 was tested for its antibacterial effect, and showed effective inhibition of target cell growth via the predicted HNH-DNase activity by T6SS-dependent delivery. Further studies showed that Hcp-ET2 mediated interbacterial antagonism via a Tle1 phospholipase (encoded by DUF2235 domain) activity. Notably, comprehensive analyses of protein homology and genomic neighborhoods revealed that Hcp-ET3-4 is fused with 2 toxin domains (Pyocin S3 and Colicin-DNase) C-terminally, and its encoding gene is followed 3 duplications of the cognate immunity genes. However, some bacteria encode a separated hcp-et3 and an orphan et4 (et4 O1 ) genes caused by a terminationcodon mutation in the fusion region between Pyocin S3 and Colicin-DNase encoding fragments. Our results demonstrated that both of these toxins had antibacterial effects. Further, all duplications of the cognate immunity protein contributed to neutralize the DNase toxicity of Pyocin S3 and Colicin, which has not been reported previously. In conclusion, we propose that Hcp-ET proteins are polymorphic T6SS effectors, and thus present a novel encoding pattern of T6SS effectors.
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis) revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.
Integrative and conjugative elements (ICEs) of the ICESa2603 family have been isolated from several species of Streptococcus spp.; however, the comparative genomic and evolutionary analyses of these particular ICEs are currently only at their initial stages. By investigating 13 ICEs of the ICESa2603 family and two ICESa2603 family-like ICEs derived from diverse hosts and locations, we have determined that ICEs comprised a backbone of 30 identical syntenic core genes and accessory genes that were restricted to the intergenic sites or the 3′-end of the non-conserved domain of core genes to maintain its function. ICESa2603 family integrase IntICESa2603 specifically recognized a 15-bp att sequence (TTATTTAAGAGTAAC) at the 3′-end of rplL, which was highly conserved in genus Streptococcus. Phylogenetic analyses suggest that extensive recombination/insertion and the occurrence of a hybrid/mosaic in the ICESa2603 family were responsible for the significant increase in ICE diversity, thereby broadening its host range. Approximately 42.5 and 38.1% of the tested Streptococcus suis and Streptococcus agalactiae clinical isolates respectively contained ICESa2603 family Type IV secretion system (T4SS) genes, and 80.5 and 62.5% of which also respectively carried intICESa2603, indicating that ICESa2603 family is widely distributed across these bacteria. Sequencing and conjugation transfer of a novel sequence type ST303 clinical S. suis isolate HB1011 demonstrated that the 89K-subtype ICESsuHB1011 retained its transferrable function, thereby conferring tetracycline and macrolide resistance.
Purpose The coexistence of mobile colistin (COL)-resistant gene mcr-1 with extended-spectrum beta-lactamase (ESBL) gene in Escherichia coli has become a serious threat globally. The aim of this study was to investigate the increasing resistance to COL and in particular its coexistence with ESBL-producing E. coli recovered from pig farms in China. Materials and methods E. coli were isolated from 14 pig farms in Jiangsu China. Susceptibility testing was identified by micro-dilution method. PCR assay and nucleotide sequencing were used to detect COL-resistant genes, mcr -1 to −5, as well as ESBL genes, bla CTX-M , bla SHV and bla TEM . Conjugation experiment, plasmid replicon typing of the multidrug resistance (MDR), S1-PFGE and DNA southern hybridization were performed to study the transferability of these genes. Results Overall, 275 E. coli isolates were recovered from a total of 432 cloacal and nasal swabs. More than 90% of the isolates were MDR, of which 70.18% were resistant to COL. Of these 275 isolates, mcr-1 was identified as the most predominant gene carried by 71.63% (197/275) of isolates, 39.59% (78/197) of the isolates were harboring both mcr-1 and ESBL genes ( bla CTX-M, bla SHV and bla TEM ). ESBL genotyping showed that bla CTX-M was the most predominant ESBL (68.49%) followed by bla SHV (16.4%) and bla TEM (15%). Sequencing revealed that the most common variants of bla CTX-M identified were, bla CTX-M-15 (69%), bla CTX-M-55 (29%) and bla CTX-M-1 (1.8%). IncHI2, IncFIB, IncFIC, IncN and IncX4 were found to be the most common Inc-types found both in donors and in transconjugants and were associated with the transfer of the mcr-1 and ESBL encoding genes. Six strains carried a total of five different plasmids: approximately 97-, 130-, 160-, 227- and 242-kb plasmids. Conclusion The coexistence of the mcr-1- and bla CTX-M-15 -carrying isolates displaying high MDR, recovered from E. coli of pig origin, is a major concern for both humans and veterinary medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.