Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm−2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.
There have been continuous efforts to seek for novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabricate monolayer phosphorene by mechanical cleavage and the following Ar + plasma thinning process. The thickness of phosphorene is unambiguously determined by optical contrast combined with atomic force microscope (AFM). Raman spectroscopy is used to characterize the pristine and plasma-treated samples. The Raman frequency of A 2 g mode stiffens, and the intensity ratio of A 2 g to A 1 g modes shows monotonic discrete increase with the decrease of phosphorene thickness down to monolayer. All those phenomena can be used to identify the thickness of this novel two-dimensional semiconductor efficiently. This work for monolayer phosphorene fabrication and thickness determination will facilitates the research of phosphorene.
Due to the intriguing optical and electronic properties, 2D materials have attracted a lot of interest for the electronic and optoelectronic applications. Identifying new promising 2D materials will be rewarding toward the development of next generation 2D electronics. Here, palladium diselenide (PdSe ), a noble-transition metal dichalcogenide (TMDC), is introduced as a promising high mobility 2D material into the fast growing 2D community. Field-effect transistors (FETs) based on ultrathin PdSe show intrinsic ambipolar characteristic. The polarity of the FET can be tuned. After vacuum annealing, the authors find PdSe to exhibit electron-dominated transport with high mobility (µ = 216 cm V s ) and on/off ratio up to 10 . Hole-dominated-transport PdSe can be obtained by molecular doping using F -TCNQ. This pioneer work on PdSe will spark interests in the less explored regime of noble-TMDCs.
Semiconducting MoS₂(₁-x) Se₂x mono-layers where x = 0-0.40 are successfully grown over large areas. A random arrangement of the S and Se atoms and a tunable bandgap photoluminescence are observed. Atomically thin, 2D semiconductor alloys with tunable bandgaps have potential applications in nano- and opto-electronics. Field-effect transistors fabricated with the monolayers exhibit high on/off ratios of >10(5).
We present the controlled synthesis of high-quality two-dimensional (2D) GaSe crystals on flexible transparent mica substrates via a facile van der Waals epitaxy method. Single- and few-layer GaSe nanoplates with the lateral size of up to tens of micrometers were produced. The orientation and nucleation sites of GaSe nanoplates were well-controlled. The 2D GaSe crystal-based photodetectors were demonstrated on both mechanically rigid SiO2/Si and flexible mica substrates. Efficient photoresponse was observed in 2D GaSe crystal devices on transparent flexible mica substrates, regardless of repeated bending with different radii. The controlled growth of 2D GaSe crystals with efficient photoresponsivity opens up opportunities for both fundamental aspects and new applications in photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.