The applicability of resonant waveguide grating (RWG)-based structures as filters to control the spectral response in an optical communication system is investigated. A new physical model for the structure is established on the basis of the Fabry-Pérot (FP) etalon model and coupled leaky mode theory (CLMT). It is found that the flat-top spectral response of the filter is achieved by the combined effect of the guided-mode resonance of an RWG and its Fabry-Pérot resonance (FPR). The bandwidth-tunable spectral response of the filter can be varied according to the change in the eigenvalues of the RWG by changing the structural parameters such as strip width of the grating and incident angle. The flat-top and bandwidth-tunable RWG-based resonant filter is a promising application for high-performance optical communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.