Abstract. In this paper, we define the directional associated curve and the self-associated curve of a null curve in Minkowski 3-space. We study the properties and relations between the null curve, its directional associated curve and its self-associated curve. At the same time, by solving certain differential equations, we get the explicit representations of some null curves.
Abstract. This work considers a particular type of swept surface named canal surfaces in Euclidean 3-space. For such a kind of surfaces, some interesting and important relations about the Gaussian curvature, the mean curvature and the second Gaussian curvature are found. Based on these relations, some canal surfaces are characterized.
In studying spherical submanifolds as submanifolds of a round sphere, it is more relevant to consider the spherical Gauss map rather than the Gauss map of those defined by the oriented Grassmannian manifold induced from their ambient Euclidean space. In that sense, we study ruled surfaces in a three-dimensional sphere with finite-type and pointwise 1-type spherical Gauss map. Concerning integrability and geometry, we set up new characterizations of the Clifford torus and the great sphere of 3-sphere and construct new examples of spherical ruled surfaces in a three-dimensional sphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.