A new generation of bike-sharing services without docking stations is currently revolutionizing the traditional bike-sharing market as it dramatically expands around the world. This study aims at understanding the usage of new dockless bike-sharing services through the lens of Singapore's prevalent service. We collected the GPS data of all dockless bikes from one of the largest bike sharing operators in Singapore for nine consecutive days, for a total of over 14 million records. We adopted spatial autoregressive models to analyze the spatiotemporal patterns of bike usage during the study period. The models explored the impact of bike fleet size, surrounding built environment, access to public transportation, bicycle infrastructure, and weather conditions on the usage of dockless bikes. Larger bike fleet is associated with higher usage but with diminishing marginal impact. In addition, high land use mixtures, easy access to public transportation, more supportive cycling facilities, and free-ride promotions positively impact the usage of dockless bikes. The negative influence of rainfall and high temperatures on bike utilization is also exhibited. The study also offered some guidance to urban planners, policy makers, and transportation practitioners who wish to promote bike-sharing service while ensuring its sustainability.
Automatic data collection (ADC) systems are becoming increasingly common in transit systems throughout the world. Although these ADC systems are often designed to support specific fairly narrow functions, the resulting data can have wide-ranging application, well beyond their design purpose. This article illustrates the potential that ADC systems can provide transit agencies with new rich data sources at low marginal cost, as well as the critical gap between what ADC systems directly offer and what is needed in practice in transit agencies. To close this gap requires data processing and analysis methods with support of technologies such as database management systems (DBMS) and geographic information systems (GIS). This research presents a case study of the automatic fare collection (AFC) system of the Chicago Transit Authority (CTA) rail system and develops a method for inferring rail passenger trip origin-destination (OD) matrices from an origin-only AFC system to replace expensive passenger OD surveys. A software tool is developed to facilitate the method implementation and the results of the application in CTA are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.