The nitrogen-fixing mimosid Leucaena leucocephala continues to be used for afforestation in degraded tropical forests. Yet, fast-growth and high drought stress tolerance enables L. leucocephala to outperform native species and L. leucocephala has been identified as one of the 100 most invasive species globally. This warrants development of effective control measures, including bio-controls, to prevent the spread of this species particularly across tropical islands. Here, we compare differences in key functional traits between L. leucocephala and eight dominant native species ( Bridelia tomentosa, Radermachera frondosa, Lepisanthes rubiginosa, Rhaphiolepis indica, Pterospermum heterophyllum, Fissistigma oldhamii, Psychotria rubra and Cudrania cochinchinensis) in L. leucocephala invaded tropical forests of Hainan Island, China. Functional traits related to growth (photosynthesis rate, stomatal conductance and transpiration rate) and drought stress tolerance (leaf turgor loss point) were measured in wet and dry seasons to investigate whether these functional traits differed between L. leucocephala and the eight dominant native species. Our results demonstrate that L. leucocephala has significantly increased growth rates (at least two-fold) in both wet and dry seasons. Additionally, L. leucocephala shows significantly higher drought stress tolerance (lower TLP) in the dry season. These results indicate that L. leucocephala would almost certainly outperform the eight dominant native species and might successfully invade Hainan tropical forests. There is an urgent need to identify native species that have similar growth and drought stress tolerance traits to enable the development of effective strategies to control L. leucocephala on Hainan Island.
Reforestation has been assumed as a natural solution to recover soil water content, thereby increasing freshwater supply. Mono-plantation of fast-growing species is the first step for performing reforestation to prevent frequent and heavy rain-induced landslide in tropics. However, fast-growing species may have negative hydraulic response to seasonal drought to maintain high growth rate and, thus, may make it difficult for reforestation in tropics to recover soil water content. We tested this hypothesis in a setting involving (a) a reforestation project, which mono-planted eight fast-growing tree species to successfully restore a 0.2-km2 extremely degraded tropical rainforest, and (b) its adjacent undisturbed tropical rainforest in Sanya City, Hainan, China. We found that, for maintaining invariably high growth rates across wet to dry seasons, the eight mono-planted fast-growing tree species had comparable transpiration rates and very high soil water uptake, which in turn led to a large (3 times) reduction in soil water content from the wet to dry seasons in this reforested area. Moreover, soil water content for the adjacent undisturbed tropical rainforest was much higher (1.5 to 5 times) than that for the reforested area in both wet and dry seasons. Thus, the invariably very high water demand from the wet to dry seasons for the mono-planted fast-growing species possesses difficulty in the recovery of soil water content. We suggest, in the next step, to mix many native-species along with the currently planted fast-growing nonnative species in this reforestation project to recover soil water content.
More than half of the world's tropical lowland rainforests have been lost due to conversion to agricultural land (such as rubber plantations). Thus, ecological restoration in degraded tropical lowland rainforests is crucial. The first step to restoration is restoring soil functioning (i.e., soil fertility, carbon, and nitrogen cycling) to levels similar to those in the primary tropical lowland rainforest. This requires understanding soil nematode community assembly in primary tropical lowland rainforest, which has never been explored in this habitat. In this study, we measured species compositions of plant and soil nematode communities and soil characteristics (pH, total and available nitrogen, phosphorus, and soil water content) in a primary tropical lowland rainforest, which is located on Hainan Island, China. We performed two tests (the null-model test and distance-based Moran's eigenvector maps (MEM) and redundancy analysis-based variance partitioning) to quantify the relative contribution of the deterministic (abiotic filtering and biotic interactions) and stochastic processes (random processes and dispersal limitation) to the soil nematode community. We found that a deterministic process (habitat filtering) determined nematode community assembly in our tropical lowland rainforest. Moreover, soil properties, but not plant diversity, were the key determinants of nematode community assembly. We have, for the first time, managed to identify factors that contribute to the nematode community assembly in the tropical lowland rainforest. This quantified community assembly mechanism can guide future soil functioning recovery of the tropical lowland rainforest.
Reforestation is an effective way to alleviate deforestation and its negative impacts on ecosystem services. It is widely recognized that the most key step for reforestation is using suitable native species, but selecting suitable native tree species is much more complex and challenging than the selection of non-native tree species that have been widely used for reforestation. Here, we quantify whether the native tree species (Bombax ceiba) can be suitable for performing reforestation to restore a 0.2 km2 highly degraded tropical monsoon forest in Baopoling Mountain (BPL), Sanya, China, due to 20 years of limestone mining for cement production. We found that stomatal closure helped Bombax ceiba develop higher drought stress tolerance than the most dominant native tree species (Bridelia tomentosa) in an undisturbed tropical rainforest in BPL, thereby better adapting well to drought stress in the dry season. These characteristics in turn facilitated it to have high survival rate (92% ± 4%) and fast growth rate, after three years of monoculture in BPL. Thus, Bombax ceiba is very suitable for performing reforestation to recover highly degraded tropical forests in Hainan Island, China.
Aims Due to fast-growing and high drought stress tolerance, Leucaena leucocephala has been widely used for afforestation in degraded tropical forests worldwide, but it is also a global invasive exotic species. Studies have shown that fast-growing can help L. leucocephala successfully invade subtropical forests. In this study, we aimed to investigate whether fast-growing and high drought stress tolerance can help L. leucocephala invade tropical rain forests. MethodsThe pioneer community of tropical rain forest which had been invaded by L. leucocephala in the Baopoling Mountain, Sanya, China was the research object. Through the t-test, we compared the differences in key functional traits that were related to growth rate (photosynthesis rate, stomatal conductance and transpiration rate) and drought stress tolerance (leaf turgor loss point) in both wet and dry seasons between L. leucocephala and eight dominant native species of pioneer community of tropical rain forest. And the principal component analysis (PCA) was used to investigate whether these functional traits can best discriminate between Leucaena leucocephala and the eight dominant native species. Important findings Leucaena leucocephala could be invariably growing fast (photosynthesis rate, stomatal conductance and transpiration rate much higher than native species) from wet to dry seasons and had higher drought stress tolerance (leaf turgor loss point much lower than native species) in the dry season. The results of PCA showed that these functional traits could significantly discriminate between L. leucocephala and the eight dominant native species. Therefore, invariable fast-growing from wet to dry season and high drought stress
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.