With the global climate change, drought disasters occur frequently. Drought prediction is an important content for drought disaster management, planning and management of water resource systems of a river basin. In this study, a short-term drought prediction model based on deep belief networks (DBNs) is proposed to predict the time series of different time-scale standardized precipitation index (SPI). The DBN model is applied to predict the drought time series in the Huaihe River Basin, China. Compared with BP neural network, the DBN-based drought prediction model has shown better predictive skills than the BP neural network for the different time-scale SPI. This research can improve drought prediction technology and be helpful for water resources managers and decision makers in managing drought disasters.
Digital image forensics has attracted a lot of attention recently for its role in identifying the origin of digital image. Although different forensic approaches have been proposed, one of the most popular approaches is to rely on the imaging sensor pattern noise, where each sensor pattern noise uniquely corresponds to an imaging device and serves as the intrinsic fingerprint. The correlation-based detection is heavily dependent upon the accuracy of the extracted pattern noise. In this work, we discuss the way to extract the pattern noise, in particular, explore the way to make better use of the pattern noise. Unlike current methods that directly compare the whole pattern noise signal with the reference one, we propose to only compare the large components of these two signals. Our detector can better identify the images taken by different cameras. In the meantime, it needs less computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.