The molecular processes underlying epidemic waves of methicillin-resistant Staphylococcus aureus (MRSA) are poorly understood1. While a major role has been attributed to the acquisition of virulence determinants by horizontal gene transfer2, there are insufficient epidemiological and functional data supporting that concept. We here report the spread of clones containing a previously extremely rare3,4 mobile genetic element-encoded gene, sasX. We demonstrate that sasX has a key role in MRSA colonization and pathogenesis, significantly enhancing nasal colonization, lung disease, and abscess formation, and promoting mechanisms of immune evasion. Moreover, we observed the recent spread of sasX from sequence type (ST) 239 to invasive clones belonging to other STs. Our study identifies sasX as a quickly spreading critical determinant of MRSA pathogenic success and a promising target for therapeutic interference. Importantly, our results provide proof-of-principle that horizontal gene transfer of key virulence determinants drives MRSA epidemic waves.
The current pandemic of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) skin infections is caused by several genetically unrelated clones. Here, we analyzed virulence of globally occurring CA-MRSA strains in a rabbit skin infection model. We used rabbits because neutrophils from this animal species have relatively high sensitivity to Panton-Valentine leukocidin (PVL), a toxin epidemiologically correlated with many CA-MRSA infections. Virulence in the rabbit model correlated with in-vitro neutrophil lysis and transcript levels of phenol-soluble modulin α and α-toxin, but not PVL genes. Furthermore, abscesses caused by USA300 and its PVL-negative progenitor USA500 were comparatively large and similar in size, suggesting PVL has had a limited role in the evolution of USA300 virulence in the context of skin infections. Our study indicates a major but not exclusive impact of virulence on the epidemiological success of USA300 and other CA-MRSA strains and emphasizes the importance of core genome-encoded toxins in CA-MRSA skin infections.
T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8
+
T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8
+
T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155–Phf19–PRC2 as a pivotal axis regulating CD8
+
T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8
+
T cell fate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.